
Modernization of Monolithic
Legacy Applications towards a

Microservice Architecture
with ExplorViz

Master’s Thesis

Stephan Lenga

June 26, 2019

Kiel University

Department of Computer Science

Software Engineering Group

Advised by: Prof. Dr. Wilhelm Hasselbring
M.Sc. Alexander Krause

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel, 26. Juni 2019

iii

Abstract

With the rapid advance of the digitization in nearly every branch of industry, the scope
and complexity of required software systems have reached new heights. In order to
keep up and adapt to the ever-changing requirements of the fast-moving markets, it is
often not enough to only rely on state-of-the-art technologies when developing software
applications. Additionally, software developers have to adjust their development process
for staying competitive. As a matter of fact, a monolithic software system, which was and
still is a popular architecture style among software developers, tends to struggle with
meeting these standards. Especially legacy software monoliths suffer from their over the
time convoluted and tightly coupled inner structure. Their often outdated technology
stack as well as their cumbersome deployment and delivery process pose a great risk
for successful maintenance and further development. Consequently, within the last years,
companies have been extensively investing in modernizing the software architecture and
development processes of their products. By moving away from software monoliths towards
the emerging microservice architecture style, an agile and robust software system with
a compatible development process can be realized. However, this modernization can be
highly challenging from a practical point of view. Available software solutions, which aim
at supporting the restructuring of software monoliths into microservices, often do not
satisfy the arising needs of the developers. While these products offer numerous static
analysis functionalities, dynamic analysis aspects are mostly missing. Yet, especially a
dynamic analysis can provide invaluable information about overlooked characteristics of
the software system.

In this thesis, we investigate the beneficial impact of the live trace visualization tool
ExplorViz when it comes to supporting developers during the software modernization
process. Therefore, we combine the dynamic analysis toolkit of ExplorViz with commonly
used static analysis tools for discovering a feasible microservice architecture within the
monolithic online lottery application in|FOCUS. Based on relevant research results and
fundamental domain-driven design concepts, a well-structured software modernization
process is presented and executed. Furthermore, we exploit the self-contained systems
architecture style as an intermediate step towards a microservice architecture. After dis-
cussing opportunities and challenges that are encountered during this modernization
endeavor, we evaluate the supporting features of ExplorViz. To this end, a questionnaire
containing qualitative open-ended questions is developed and used for conducting a guided
interview with the software developers of the in|FOCUS application. Besides providing
critical feedback on the current development state of ExplorViz, in particular its capabilities
to support software modernization process, this evaluation gives rise to possible future
development ideas for the live trace visualization tool.

v

Acknowledgments

I would first like to thank Prof. Dr. Wilhelm Hasselbring for giving me the opportunity to
write my thesis at the Software Engineering Group of the Kiel University and for establish-
ing the contact with the adesso AG. Moreover, I am grateful to Alexander Krause for his
most valuable support and various interesting technical discussions.

I want to thank Uwe Lutter for making it possible to write this thesis within the scope of a
Master’s thesis internship at the adesso office in Hamburg. Furthermore, I would like to
thank the members of the in|FOCUS development team for providing insights into their
software framework and for participating in the evaluation process. In particular, I really
appreciated the guidance provided by Dan Kröger.

Moreover, I would like to thank my parents and my brother for their loving support
throughout my life, for their guidance and all the opportunities they have provided to me.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals of this Thesis . 3

1.2.1 G1: Discovery of the Software System in|FOCUS and its Domain . . . 3
1.2.2 G2: Identification of a Suitable Decomposition into Self-Contained

Systems . 3
1.2.3 G3: Refinement of the Self-Contained Systems into Microservices . . 3
1.2.4 G4: Assessment of the Ability of ExplorViz for Exploring Self-Contained

Systems and Microservices . 3
1.3 Document Structure . 4

2 Foundations and Technologies 5
2.1 The Monolithic Architecture Pattern . 5
2.2 The Microservice Architecture Pattern . 7
2.3 The Self-Contained Systems Architecture Pattern 9
2.4 Domain-Driven Design . 10
2.5 The Static Software Structure Analysis Tool Structure101 11
2.6 The Software Monitoring Framework Kieker 12
2.7 The Live Trace Visualization Tool ExplorViz 13
2.8 The Database Administration Tool DBeaver . 15
2.9 The JDBC Driver log4jdbc . 15
2.10 The Lottery Web Plattform in|FOCUS . 15
2.11 The Enterprise Container Platform Docker . 16

3 Analysis of a Monolithic Application 19
3.1 Software Architecture Modernization . 19
3.2 Approach for Analyzing in|FOCUS . 21
3.3 Domain Analysis of in|FOCUS . 23
3.4 Static Analysis of in|FOCUS . 29

3.4.1 Introduction to the in|FOCUS Project 29
3.4.2 Analyzing in|FOCUS with Structure101 31

3.5 Dynamic Analysis of in|FOCUS . 38
3.5.1 JBoss and Kieker Configurations . 38
3.5.2 Analyzing the Behavior of in|FOCUS with ExplorViz 42

3.6 Database Analysis of in|FOCUS . 46
3.7 Composition of the Services . 50

ix

Contents

4 Evaluation 55
4.1 Goals . 55

4.1.1 Research Questions . 56
4.1.2 Hypotheses . 56

4.2 Method . 56
4.2.1 General Interview Guide Approach . 56
4.2.2 Recruitment of Participants . 57

4.3 Interview . 57
4.3.1 Setup . 57
4.3.2 Scenario . 58
4.3.3 Execution . 59

4.4 Results . 61
4.4.1 Participants . 61
4.4.2 Answers . 62
4.4.3 Discussion of the Evaluation Results . 68

4.5 Threats to Validity . 70

5 Related Work 71
5.1 Software Modernization Projects . 71

5.1.1 Otto.de . 71
5.1.2 ExplorViz . 73
5.1.3 OceanTEA . 75
5.1.4 GeRDI . 75
5.1.5 Galeria Kaufhof . 76
5.1.6 Groupon . 77

5.2 Software Modernization with the Help of Analysis Tools 78
5.2.1 Modernization of a Customer Management Application 78
5.2.2 Microservice Discovery for a Cargo Tracking Domain 79

6 Conclusions and Future Work 83
6.1 Conclusion . 83
6.2 Future Work . 84

Bibliography 87

Appendix 91

x

Chapter 1

Introduction

1.1 Motivation

Monolithic software systems that are being developed over a longer period of time not
only tend to increase in complexity but also become more and more convoluted in their
inner structure. Previously modular components become tightly coupled with one another
[Thönes 2015]. Formally defined best practices and design decisions are being disregarded
for certain reasons, that is, a lack of discipline or the necessity to reduce development
expenses. Therefore, it becomes more challenging as well as more costly to continue devel-
oping and maintaining these systems. Their often outdated technology stack continuously
rises the technical debt which leads to an increased risk for any future successful develop-
ment. Since a technology update would affect the whole application and is therefore costly
and time-consuming, a monolithic system is often unable to successfully and sustainably
reduce its technical debt [Woods 2016].

Moreover, monolithic applications struggle when employing agile development and
delivery processes which would increase the effective productivity and flexibility of de-
velopers [Bennett and Vaclav 2000]. Even small changes to a single part of the code can
result in the redeployment of the whole application. Accordingly, this limits continuous
deployment [Kalske et al. 2018]. When it comes to monolithic applications, it is not easy
to provide additional resources for certain overloaded modules without duplicating the
whole application by scaling horizontally. In certain high-stress situations, some parts of
the system might have a much higher workload than usual. A common example are online
shops during the Christmas season. The inability of a monolithic software system to scale
efficiently in order to handle increasing workload increases operating cost [Newman 2015a].
Another downside of monolithic systems is its proneness to error propagation throughout
large parts of the application.

Consequently, companies started to invest in modernizing their software systems and
rebuild their applications with a more robust and flexible software architecture. The mi-
croservice architecture is an emerging architecture style with an rapidly increasing popularity
among software engineers. Hence, it is often the target architecture for these modernization
processes. Its concept is characterized by the interaction of modular, autonomous services
called microservices. Each of these microservices implements a set of distinct features or
functionality and collaborates with other microservices in providing some service opera-

1

1. Introduction

tion. Their autonomous design avoids tight coupling with other services of the software
system and streamlines individual development, testing, and deployment. As a result, agile
software development concepts such as DevOps and Continuous Delivery are supported
[Newman 2015a]. Besides, this modernization makes the automation of system building out
of a version control system easier. The same applies to the automation of unit testing and
performance benchmarking, as well as the automation of deployment in test and produc-
tion environments. This significantly increases development productivity and strengthens
the ability to react to changing requirements and is of utmost importance in order to stay
competitive in today’s software market.

Nevertheless, the modernization process of a monolithic software system to a microser-
vice architecture is challenging and time-consuming. A bottom-up approach by starting
over from scratch and reimplementing the whole application as microservices is rarely
possible. Too many resources are spent while the actual functionality of the software
system remains unaltered. Therefore, it is often more practical to incrementally decompose
the monolith into microservices. However, this task is far from being trivial. The first
step for the extraction of microservices is the identification of separate modules, each
with specific responsibilities with explicit borders within the monolith, so-called bounded
contexts. These bounded contexts will outline the organizational structure of the resulting
microservice architecture. Afterwards, the implementation, migration and deployment of
the microservices takes place [Knoche and Hasselbring 2018].

The software modernization process of a large-scale application is the focus of this
master’s thesis. In cooperation with the German IT consulting and software development
company adesso AG, we analyze a large-scale lottery software application in|FOCUS1.
By combining domain-driven design concepts, static analysis technologies, and dynamic
monitoring solutions such as Kieker2 and ExplorViz3, a modernized software architecture
of in|FOCUS is developed and thoroughly discussed. In particular, the above mentioned
tools are used for discovering and visualizing the actual architecture of the in|FOCUS
software system and monitoring its run-time behavior. The domain of the application
is analyzed and its bounded contexts are identified. Each context serves as the basis
for partitioning the legacy architecture into well-defined self-contained systems. As a next
step, these self-contained systems are split up further into microservices with the help of
ExplorViz.

Furthermore, the usability of the ExplorViz tool for discovering a microservice archi-
tecture from a monolithic software system is assessed with the help of qualitative guided
interviews which are conducted in cooperation with a group of software developers work-
ing at adesso. This investigation does not only evaluate the current degree of support
for modernization projects but also reveals new ideas for future extensions and possible
improvements of ExplorViz.

1https://www.adesso.de/de/branchen/lotteriegesellschaften/leistungen/loesungen/index.jsp, accessed 29.05.2019
2http://kieker-monitoring.net/, accessed 15.04.2019
3https://www.explorviz.net/, accessed 15.04.2019

2

https://www.adesso.de/de/branchen/lotteriegesellschaften/leistungen/loesungen/index.jsp
http://kieker-monitoring.net/
https://www.explorviz.net/

1.2. Goals of this Thesis

1.2 Goals of this Thesis

After analyzing the domain and the legacy architecture of the large-scale monolithic
in|FOCUS software system, we aim at exploring a possible division into self-contained
systems. In order to identify suitable boundaries for these independent services, we combine
static analysis tools with the dynamic analysis and visualization capabilities of ExplorViz.
A further division of the newly developed architecture into microservices is conducted by
dynamically analyzing the behavior of the software application with ExplorViz. Finally, the
ability of ExplorViz to support this kind of modernization process is assessed. A detailed
exposition of these goal is provided below.

1.2.1 G1: Discovery of the Software System in|FOCUS and its Domain

In order to identify a practicable division of the legacy architecture into distinct services,
the current code and database architecture of the monolithic application has to be explored.
Therefore, the domain of the application should be statically analyzed and divided into
bounded contexts with the help of static analysis and domain experts, as suggested by
recent research. These bounded contexts will serve as a foundation for separating logic
and data of the services from each other in order to create autonomous, self-contained
components, each with its own independent logic and data.

1.2.2 G2: Identification of a Suitable Decomposition into Self-Contained
Systems

Here, the goal is to identify a possible decomposition of the existing architecture in order
to restructure it into well-defined self-contained systems. A suitable modernization process,
which should be based on up-to-date expert literature will be chosen and presented to the
reader. Static analysis tools should provide the necessary insight into the legacy architecture
of in|FOCUS.

1.2.3 G3: Refinement of the Self-Contained Systems into Microservices

We aim at discovering possible microservices within the previously defined self-contained
systems. The live trace visualization tool ExplorViz will be the main tool to support this
step by monitoring and dynamically analyzing the behavior of the analyzed software
application.

1.2.4 G4: Assessment of the Ability of ExplorViz for Exploring Self-
Contained Systems and Microservices

This thesis will provide an assessment of the supportive features of ExplorViz for exploring
feasible boundaries of self-contained systems or microservice within a large-scale mono-

3

1. Introduction

lithic software system. Hence, it will be investigated how ExplorViz helps in overcoming
certain challenges of the software modernization process. To this end, software developers
with in-depth knowledge of the in|FOCUS application should be interviewed with an
appropriately chosen questionnaire. It can be assumed, that invaluable information on
possible improvement of ExplorViz is gained by giving the participants the opportunity to
utilize ExplorViz for performing certain architectural analysis tasks themselves.

1.3 Document Structure

The remainder of this thesis is organized as follows. Chapter 2 gives a brief overview on
the technologies which will be used throughout this thesis. Chapter 3 outlines the approach
of how to achieve the previously described goals. It presents the software modernization
process of in|FOCUS as well as the derived architecture decomposition. It is argued that this
decomposition is indeed suitable for the in|FOCUS application. Next, Chapter 4 presents
the assessment of ExplorViz capabilities to support the software modernization process of
transforming a monolithic software system into a microservice architecture. The assessment
setup and the results of the conducted qualitative interviews are discussed. Furthermore,
Chapter 5 presents projects that went through a similar modernization process but utilizing
analysis tools other than ExplorViz. Chapter 6 concludes the thesis and presents an outlook
on future work.

4

Chapter 2

Foundations and Technologies

In this chapter, the reader is introduced to the key technologies and theoretical foundations
which are relevant to this thesis. First, Section 2.1 and Section 2.2 introduce main ideas
and characteristics of a monolithic as well as a microservice architecture. Then, Section 2.3
familiarizes the reader with the benefits of self-contained systems when it comes to
modernizing a monolithic software application. Here, we identify this architecture style
as being suitable for an intermediate step when transitioning from a monolithic to a
microservice architecture.

Thereafter, the concept of domain-driven design is presented in Section 2.4 as a basis of
modeling such self-contained systems. The analysis approach of this thesis combines static
and dynamic analysis methods for discovering a modernized architecture within a legacy
application. Hence, Section 2.5 continues with the explanation of the main features of the
employed static architecture analysis tool Structure101. Next, the dynamic monitoring
framework Kieker and the live trace visualization tool ExplorViz are presented in Section 2.6
and Section 2.7. Since modernizing a legacy architecture also requires the analysis of the
system’s database, the database administration tool DBeaver is introduced in Section 2.8
for this reason. Furthermore, Section 2.9 presents the database logging library log4jdbc for
listing executed SQL queries. Lastly, an overview of the to be analyzed monolithic software
system in|FOCUS in Section 2.10 is given and main concepts of Docker are discussed in
Section 2.11.

2.1 The Monolithic Architecture Pattern

In the past, software systems were generally designed as a single-tiered software system
which is organized in a centralized way by sharing resources on a single machine, such
as memory and data. As it is shown in Figure 2.1a, it is usually divided into a three
layers, namely User Interface, Business Logic and Data Interface which connects the monolith
to its database. Even though the application itself can be organized in different compo-
nents, modules, or services, the whole application is built and deployed as one artifact.
Hence, different components of the application cannot be executed independently but are
tightly coupled. Usually, these architectural choices are often termed as a Software Monolith
[Richardson 2014].

5

2. Foundations and Technologies

User Interface

Business Logic

Monolithic
Architecture

Database

Data Interface

(a) Monolithic software architecture

Database

Microservice
UI

Microservice

Microservice

Database

Microservice

Microservice
UI

(b) Microservice software architecture

Figure 2.1. Comparison of the monolithic and microservice architecture style.

This architecture style has several advantages [Kharenko 2015]. First, it simplifies the
development and deployment of less complex systems. Especially for small teams with no
prior experience with alternative architectures such as microservices, the monolith often
seems as the more expedient choice. Secondly, monolithic systems tend to be easier to test
since there are less different sources of possible errors. For clarification, when it comes
to testing the internal communication between modules, package loss due to networking
failures does not need to be considered as a possible reason for a failed test. Furthermore, a
monolith is easily horizontally scalable by replicating the whole application behind a load
balancer which distributes the requests to each instance.

However, monolithic applications also come with a price. The internal structure of
software systems that evolved over time often becomes convoluted and tightly coupled.
The boundaries of initially clearly defined modules within the monolith tend to be broken
[Kharenko 2015]. The entanglement of the components results in a chain of synchronous
deep nested calls as well as multiple points of change when updating the application.
After modifying the code, the whole application needs to be redeployed. This increases
development efforts and decreases the ability of continuous deployment as well as the
flexibility of the development process.

The control flow inside a monolithic architecture is difficult to understand and fail-
ures might propagate through big parts of the system [Bonér 2017]. Due to its intricate
complexity, it is challenging to maintain the application while still keeping up with the

6

2.2. The Microservice Architecture Pattern

environment and its changing demands and requirements [Sneed and Seidl 2013]. Usually,
monolithic applications are scaled horizontally by duplicating the entire system behind a
load balancer in order to serve the increasing requests directed to the system. However,
the increased load does often only affect certain subsystems and not the entire application.
Therefore, resources are wasted by scaling the entire software system rather than targeting
only the overloaded subsystems.

Furthermore, employing new technologies to the monolith is often not straightforward
since changes to the technology stack usually affect the whole application. This signif-
icantly increases the required resources for the development process [Kharenko 2015].
Consequently, developers undertake a long-term commitment when initially choosing the
technology stack of the application. This often leads to the use of outdated technologies
in the future and therefore to an accumulation of technical dept [Sneed and Seidl 2013].
The sheer size and complexity of the monolith also impedes on the familiarization of the
system for developers who are new to the team. When the software application reaches a
certain complexity, experience shows that a division of the team into specialized groups
of developers increases the overall productivity and quality of the product. This intro-
duced development process structures the communication between the teams and allows
developers to specialize in used technologies of the application. In contrast, a monolithic
architecture does not naturally reinforce an independent development and deployment
of software components. Hence, the communication effort and therefore the development
costs increase [Kharenko 2015].

2.2 The Microservice Architecture Pattern

A Microservice architecture enforces the goal-oriented interaction of modular and au-
tonomous software services, called microservices [Lewis and Fowler 2014]. Each microser-
vice is a highly specialized unit which should only have a single responsibility [Newman
2015a]. Therefore, each service has precisely defined, comprehensible tasks within a given
boundary. Bonér [2017] emphasizes the importance of the isolation as well as the autonomy
of each microservice. This independence simplifies the adoption of Continuous Integration
and Continuous Deployment (CI/CD) technologies. Further benefits are the targeted scal-
ing of services under heavy workload while using the available resources of the system
efficiently. The particular support of independent monitoring, testing, and debugging of
specific services are additional advantages of this architecture style. Figure 2.2 depicts the
flexible and targeted scaling of microservices. In contrast to monolithic architectures, the
need of replicating the whole system for horizontal scaling purposes is alleviated. Instead,
overloaded microservices can be individually targeted for vertical scaling.

Usually, a microservice is a stateful component [Bonér 2017]. This implies that an
isolation of the behavior is insufficient for defining loosely coupled units. A microservice
also needs to own its state exclusively, preferably inside its own database. An example
is depicted in Figure 2.1b. Naturally, this is only the case for stateful and not stateless

7

2. Foundations and Technologies

Horizontal
scaling

Microservice
Application

Vertical
scaling

Microservice
Application

Monolithic
Application

Monolithic
Application

Monolithic
Application

Figure 2.2. Comparison of the horizontal and vertical scaling possibilities of a monolithic and mi-
croservice software architectures.

services. Oftentimes, different microservices need similar data. The data on users of the
application is a common candidate for this need. Multiple microservices require certain
parts of this data set and commit changes to it within the same time period. Therefore, only
eventual consistency can often be achieved throughout the software system while ensuring
the independence of loosely coupled services [Kharenko 2015; Newman 2015a]. This leads
to particular design challenges which are further discussed in Section 3.6.

The desired communication between microservices is led by the principle "smart
endpoints, dump pipes" [Lewis and Fowler 2014]. Hence, clearly defined communication
interface adapters provide an API, such as an HTTP RESTful API, that can be used by other
microservices or third-party systems. Another frequently discussed approach is the use of
a lightweight messaging bus for distributed messaging, such as RabbitMQ1 or ZeroMQ2.
Generally speaking, asynchronous network calls and transaction-less database calls should
always be preferred in order to ensure loose coupling of the services. Furthermore, a
microservice implements its own independent web user interface for communicating
independently with its end user. Figure 2.1b illustrates this characteristic.

The strictly defined boundaries within the software system isolate a microservice from
others. As a result, a failure within a service does not propagate outside the limits of this

1https://www.rabbitmq.com/, accessed 28.05.2019
2http://zeromq.org/, accessed 28.05.2019

8

https://www.rabbitmq.com/
http://zeromq.org/

2.3. The Self-Contained Systems Architecture Pattern

service. Other microservices are unaffected by this fault and remain operational. Moreover,
the high degree of autonomy and decoupling of each microservice enables the developer
to select its technology stack independently [Newman 2015a]. As an example, each mi-
croservice can be implemented with a suitable programming language in order to increase
the operating as well as the development efficiency. Moreover, database technologies can
be individually selected to meet the requirements of the microservice and its specific data
model.

Another important topic for discussion is the size of a respective microservice. The
name "microservice" itself seems to emphasize the importance of the small size of a service.
However, whether microservices should be intrinsically small is a highly controversial topic.
Some argue that the actual size of the code base of each service relies on its organizational
structure of the development process. However, the general consensus is that a single
developer team should own and manage the code base for a single microservice [Lewis
and Fowler 2014; Newman 2015a; Richards 2016]. This concept originates from Conway’s
Law which states that the products structure will at some point represent the structure of
its organization [Conway 1968].

While microservices enable an agile and robust development process, it also leads to new
challenges for the developers. This architecture style introduces the inherent complexity of
a distributed system. Inter-process communication mechanisms have to be implemented to
ensure a loss-free delivery of messages. Fallback strategies have to be developed which
handle the case of a service or network failure [Kharenko 2015]. Furthermore, the previously
mentioned eventual data consistency of the microservices can lead to severe problems if
not handled correctly [Kharenko 2015; Newman 2015a].

When it comes to scaling, a certain level of expertise of the developer is required in
order to efficiently take advantage of the flexible scaling possibilities of a microservice
architecture. A microservice application usually consists of a set of services with possibly
multiple runtime instances. Each instance has to be configured, scaled, and monitored.
Automated service discovery mechanisms have to be implemented when the number of
microservices exceed a certain threshold. Experience shows that manual approaches are
often unable to handle this degree of complexity [Kharenko 2015].

2.3 The Self-Contained Systems Architecture Pattern

The Self-Contained Systems (SCS)3 architecture is often used as an intermediate step when
transitioning from monoliths to a microservice architecture [Hasselbring and Steinacker
2017]. The reason for that is the reduction of complexity while still benefiting from the main
concepts of the microservice architecture style. This includes the enforcement of service
isolation via independent units, the discharge of a centralized infrastructure, the support
for a flexible adoption of the technology stack, as well as the alignment of the structure

3http://scs-architecture.org/, accessed 28.05.2019

9

http://scs-architecture.org/

2. Foundations and Technologies

of both the application and the organization. However, there are also a number of key
differences in comparison to microservices. The main agreed differences are the following:
Other than microservices, the communication between each SCS should ideally be reduced
to a minimum. Each SCS represents a subdomain of the software application which should
execute its use cases independently. Furthermore, an SCS can be split further into separate
units, especially its business logic. This iterative divide-and-conquer approach is one of the
main advantages of SCSs when using them as an intermediate step in the modernization
process of a monolithic software architecture towards microservices. The initial coarse
granularity of the first division of the monolith into SCSs, followed by a more fine-grained
division into microservices is one possible approach in order to overcome the complexity
of the modernization process. Last, the size as well as the number of SCSs inside a software
architecture usually differ from the microservice approach. A SCS architecture commonly
consists of not more than approximately 25 SCSs while a microservice architecture may
possibly have hundreds of services [Wolff 2017].

2.4 Domain-Driven Design

Domain-driven design is a software development approach which emphasizes the impor-
tance of the exact definition and modeling of the software system’s domain. It serves as the
basis for the concept of microservices. The domain represents the field of application of
the software. A domain model is created which represents key domain objects and their
relationships. It is necessary to not only model the software itself but also its domain and
the relations and interactions between the two to become aware of all possible issues that
could later on pose problems for the development process. For achieving the needed quality
of communication between software architects and domain experts, a ubiquitous language
is developed which is structured around the domain model. The modeled architecture is
characterized by a business logic layer which contains the domain classes of the application
and separates those from other functions of the system to avoid coupling. Each domain
class is autonomous, highly specialized and contains the business logic and data necessary
to fulfill its single purpose [Evans 2003].

In order to find the boundaries of these domain classes, the domain is divided into
bounded contexts. Each bounded context represents a self-contained subdomain of the
system. Hence, the required encapsulation of the domain classes resembles the isolation of
independent microservices. Therefore, strategies for developing domain-driven designed
systems can also be applied in order to discover a microservice architecture [Evans 2003].
An example is given by Figure 2.3. It shows the division of the domain of a trading company
into subdomains, presented as blue boxes and further into domain classes, presented as
gray hexagons. These are grouped into bounded contexts, depicted as red ovals. Bounded
contexts can contain any number of domain classes. Furthermore, they can even incorporate
one or more subdomains within their boundaries.

10

2.5. The Static Software Structure Analysis Tool Structure101

Shipping

Delivery

Packaging

Pricing

Discount

Sales

Purchase

Bundles

Inventory ERP

Stock

Figure 2.3. Division of the domain into domain classes and definition of bounded contexts.4

2.5 The Static Software Structure Analysis Tool Structure101

Structure1015 is a static code analysis tool for the visualization of the source code packages
and contained dependencies of a software project. It provides a workbench with an array
of different tools which aim at supporting the software architect in understanding, analyz-
ing, and refactoring large and complex software systems. This application automatically
constructs a traversable hierarchical dependency graph of an imported software project.
This model can then be manipulated by using pattern transformations, as well as reorga-
nizing, filtering, and automatically grouping related modules. This aims at supporting the
software architect to decompose monoliths and disentangle as well as decouple software
components.

Figure 2.4 shows an example of the user interface of Structure101. The dependency
graph presents the user with an overview of the packages of the analyzed software
application, their dependencies, and the direction of said dependencies. The numbers next
to the relation arrows indicate the number of relations of a package to another. Moreover, a
package can be expanded to see its content, as illustrated by the orange box in the figure.

4https://www.informatik-aktuell.de/entwicklung/methoden/ddd-context-is-king-kein-context-keine-microservices.html,
accessed 28.05.2019

5https://structure101.com/, accessed 22.06.2019

11

https://www.informatik-aktuell.de/entwicklung/methoden/ddd-context-is-king-kein-context-keine-microservices.html
https://structure101.com/

2. Foundations and Technologies

Figure 2.4. Static code analysis tool Structure101 shows code dependencies between classes and
packages.7

Structure101 provides additional views for more detailed information about packages and
classes, as well as their relations. A complete list can be found on the Structure101 website6.

2.6 The Software Monitoring Framework Kieker

Kieker8 is a dynamic analysis tool developed by the Kiel University and the University of
Stuttgart. Its first main application is the performance monitoring and the dynamic analysis
of the runtime behavior of large-scale software systems. This is realized by measuring
operation response times, CPU utilization and memory usage. Additionally, the analysis
of user sessions and traces provide an detailed insight into the behavior of the monitored
application. The second main application of Kieker is the architecture discovery of a
software system. Therefore, structural and behavioral architecture data is extracted by
identifying architectural entities, such as packages and classes, as well as their interactions,
such as procedure calls.

6https://structure101.com/legacy/structural-analysis/, accessed 24.06.2019
7https://www.prweb.com/releases/structure101/java/prweb448397.htm, accessed 15.04.2019
8http://kieker-monitoring.net/, accessed 15.04.2019

12

https://structure101.com/legacy/structural-analysis/
https://www.prweb.com/releases/structure101/java/prweb448397.htm
http://kieker-monitoring.net/

2.7. The Live Trace Visualization Tool ExplorViz

M

M

M

M

M

M

M

e.g., AOP-based
method call interception

Monitoring Log/Stream

e.g., file system, database,
message-oriented middleware

e.g., trace information, workload, response
times, resource utilization, loop counts

Monitoring
Record

Kieker.Monitoring Kieker.Analysis

Analysis Plug-In

e.g., architecture reconstruction,
performance evaluation, online
adaptation control, failure diagnosis

Kieker.Monitoring

Monitoring
Probe

Monitoring
Controller

Monitoring
Writer

Kieker.Analysis

Monitoring
Reader

Analysis/
Visualization

Plugin

Analysis
Controller

Figure 2.5. Overview of the internal structure of Kieker.10

In order to gather all the required information for the two presented use cases, Kieker
provides several predefined, customizable probes for the application instrumentation and
motorization. These probes can be weaved into the byte code with the help of AspectJ9,
an aspect-oriented extension to Java which allows the modularization of cross-cutting
concerns such as monitoring and logging. The gathered data is then written and stored into
monitoring records for further processing and analysis [van Hoorn et al. 2012]. Figure 2.5
presents an overview of the internal structure of Kieker for supplementary insight.

2.7 The Live Trace Visualization Tool ExplorViz

ExplorViz11 is a live trace visualization tool which is developed by the Software Engineering
Group of the Kiel University. It aims at improving the comprehension of the system and the
ongoing communication within. A rendered 2D software landscape, exemplary depicted
in the bottom part of Figure 2.6, shows the model of an analyzed software landscape and
its software systems (gray boxes). The nodes of a software system (green boxes) contain
applications (purple boxes) which communicate with each other (orange lines).

The top part of Figure 2.6 shows the 3D application visualization of the data model
landscape of a chosen application. This visualization is in this case based on the city
metaphor. It depicts detailed information about the architecture of the application and
communication (orange lines) between components, such as packages (green boxes) and
classes (blue boxes) [Fittkau et al. 2013; 2015; 2017]. Different extensions, such as a virtual
reality mode allow for an even more immersive and interactive discovery of the internal
structure of software systems. ExplorViz uses Kieker, which was presented in Section 2.6,
to instrument software systems for a dynamical analysis of its runtime behavior. Instead
of using Kieker’s analysis methods, ExplorViz uses its own and instructs Kieker to send
it the gathered monitoring data, called records. The Analysis service creates traces from

9texthttps://www.eclipse.org/aspectj/, accessed 15.04.2019
10http://kieker-monitoring.net/properties/, accessed 15.04.2019
11https://www.explorviz.net/, accessed 15.04.2019

13

https://www.eclipse.org/aspectj/
http://kieker-monitoring.net/properties/
https://www.explorviz.net/

2. Foundations and Technologies

Figure 2.6. 3D application (top) and 2D landscape visualization (bottom) generated by ExplorViz.

Figure 2.7. Overview of the microservice architecture of ExplorViz [Zirkelbach et al. 2019].

14

2.8. The Database Administration Tool DBeaver

these records which are sent to the Landscape service which creates the models which are
visualized in the Frontend service of ExplorViz [Zirkelbach et al. 2019]. An overview of the
microservice architecture and the interaction of these services is presented in Figure 2.7.

2.8 The Database Administration Tool DBeaver

Not only the code base but also the database structure has to be considered for reconstruc-
tion when modernizing monolithic software systems. Database discovery and analysis
tools enable the developer to understand and restructure the current database schema of
legacy application for meeting the specific needs of the new architecture.

DBeaver12 is an open source multi-platform SQL client and database administration
tool. Its functionalities range from data browsing and editing to the visualization of the
database schema with the help of entity-relationship (ER) diagrams. Furthermore, an SQL
editor enables the execution of SQL queries. The application supports relational databases
with a JDBC driver which is a software component that enables the interaction between a
database and a Java application. For other databases, such as NoSQL, proprietary database
drivers are used. Figure 2.8 shows the UI of DBeaver. After establishing a connection to a
database, the user can browse its different components, such as its tables and views, on
the left hand side of the UI. The main view in the center presents automatically layouted
visualization of the database tables and their relations to each other.

2.9 The JDBC Driver log4jdbc

The open source library log4jdbc is a Java Database Connectivity (JDBC) driver that can log
SQL and JDBC calls for other logging frameworks such as Apache Log4j. The JDBC API is
part of the Java SE Platform 14. Its task is to establish and manage a connection to relational
databases as well as to transmit SQL queries to the database. The query responses are
then transformed into a for Java usable format. Additional features of log4jdbc include the
logging of both the query execution times as well as the result set of an SQL query.

2.10 The Lottery Web Plattform in|FOCUS

The software system in|FOCUS is key object for the architectural analysis of this thesis. It
is a sales and management software solution for lottery operators, developed by adesso15, a
German consulting and software development company. This multi-channel portal platform
enables the management of customer data, which is stored in a centralized database.

12https://dbeaver.io/, accessed 22.06.2019
13https://github.com/dbeaver/dbeaver, accessed 15.04.2019
14https://www.oracle.com/technetwork/java/javase/tech/index.html, accessed 15.04.2019
15https://www.adesso.de/de/index.jsp, accessed 01.06.2019

15

https://dbeaver.io/
https://github.com/dbeaver/dbeaver
https://www.oracle.com/technetwork/java/javase/tech/index.html
https://www.adesso.de/de/index.jsp

2. Foundations and Technologies

Figure 2.8. Database administration and analysis tool DBeaver shows an ER diagram of a connected
database.13

Additionally, this application gives detailed insight into the customer behavior and shows
invaluable information for sales and marketing campaigns. It provides access to a catalog of
online lottery and instant lottery games as well as other games. While consisting of multiple
core functionalities, the in|FOCUS application is furthermore customized for the specific
needs of each customer. Adesso also makes in|FOCUS available as a Software-as-a-Service
for their customers which is currently used by four different state lotteries.

2.11 The Enterprise Container Platform Docker

The enterprise container platform Docker16 is a set of collaborating Software-as-a-Service
and Plattform-as-a-Service products which employ operating-system level virtualization in
order to standardize the development and the delivery of software applications. The target
software system is therefore bundled into a standardized unit, called a container. Each
container incorporates their own software, the necessary libraries as well as configuration
files. These containers are created at runtime with the help of a Docker images which is an
executable standalone and lightweight software package. The images are assembled with
the help of a Dockerfile script which is written by the developer. Thereafter, the developer
specifies the content of the containers within a docker-compose.yml file. Finally, the docker

16https://www.docker.com/, accessed 28.05.2019

16

https://www.docker.com/

2.11. The Enterprise Container Platform Docker

containers are hosted by the Docker Engine. Thereby, the Docker containers isolate its
software from the environment and will therefore always run the same, regardless of the
infrastructure.

Develop
Application

Write Dockerfile Create images
defined at
Dockerfile

Define services with
docker-compose.yml

Run containers
in Docker Engine

Figure 2.9. Overview of the Docker development workflow.

17

Chapter 3

Analysis of a Monolithic Application

The third chapter of this thesis presents the software modernization approach of the
in|FOCUS application as well as its results. In order to ascertain the taken decisions
of this process, Section 3.1 discusses applied key concepts of the software architecture
modernization. After classifying the conducted project as brownfield, the benefits of
exploiting self-contained systems as an intermediate step in the transition from a monolithic
architecture towards microservices are discussed. Thereafter, the domain analysis of the
software system is performed in Section 3.3. We divide the domain into a set of distinct
bounded contexts. They serve as a basis for structuring the static analysis of Section 3.4
with the help of Structure101. The goal of the static analysis is the partitioning of in|FOCUS
into well-defined self-contained systems. Next, Section 3.5 builds on the findings of the
static analysis. The live trace visualization tool ExplorViz is then utilized to dynamically
investigate the behavior of the in|FOCUS application. Based on these results, the previously
defined self-contained systems are further divided into microservices. Section 3.6 explains
the final step of the modernization process, namely the adaptation of the database to the
new architecture style. This chapter concludes by discussing different alternatives when
composing the newly developed services to a single, coherent software system.

3.1 Software Architecture Modernization

After a certain time in development, software systems tend to struggle with an over-
whelming complexity and the software architecture oftentimes deteriorates into a highly
entangled and coupled monolith. Thus, the ability to react to the requirements and needs
of an environment of ever increasing speed is hindered by a non-agile development and
deployment process. Moreover, developments of newly requested features could not often
be delivered in time [Knoche and Hasselbring 2018]. Additionally, the inability to employ
and benefit from emerging software technologies while being stuck with an outdated
technology stack is troublesome. The resulting accumulation of technical debt [Sneed and
Seidl 2013] is a vicious circle.

Consequently, more and more companies invest a considerable amount of resources for
the modernization of their monolithic software systems towards more agile and maintain-
able software architectures such as microservices. As presented in Section 2.2 the microser-
vice architecture excels in providing a highly scalable and flexible software architecture and

19

3. Analysis of a Monolithic Application

development process. However, the journey from a monolith to a microservice-based appli-
cation is not trivial. During the last years, a number of different modernization processes
were developed in order to guide the developers during this complex endeavor [Geitgey
2013; Richardson 2014; Martincevic 2016; Bonér 2017; Bindick and Stoye 2018; Fritzsch et al.
2018; Kalske et al. 2018; Knoche and Hasselbring 2018].

Generally speaking, it is usually distinguished between greenfield and brownfield mod-
ernization projects [Newman 2015b]. The first describes the complete redevelopment of the
software system from scratch without any integration of legacy code. This clean-slate ap-
proach provides the opportunity to investigate and to chose the most fitting state-of-the-art
technologies and redevelop the new application without any constraints. Nevertheless, this
freedom often comes with a lack of clear direction and results in a comparatively high risk
of success. Additionally, every aspect of the software system needs to be newly defined
which further increases the challenge of finalizing a greenfield project in a reasonably
timely manner [Admin 2018].

Alternatively, brownfield projects take a prior existing legacy system as the basis of
the redevelopment of the software application. Hence, the newly developed software
architecture has to take previously made design decisions into account. Furthermore,
the modernized system usually has to coexist with the legacy application to a certain
extent. Therefore, the general direction of brownfield projects is usually more structured
because they orientate themselves towards the legacy system. By reusing business processes
and parts of the already existing code base, valuable resources can be saved. This lets
the developers focus their efforts on important pending design decisions. Besides, more
resources can be utilized for introducing state-of-the-art technologies which were previously
unknown to the involved developers [Newman 2015b]. However, the brownfield approach
also requires in-depth knowledge of the existing legacy system in order to efficiently reuse
parts of its code base or its architecture. Additionally, the endeavor of dealing with legacy
code often gets underestimated and can lead to an initially overlooked time sink [Newman
2015b], [Admin 2018]. On top of that, brownfield projects can encourage corner cutting by
the excessive reuse of the legacy code or outdated technologies.

When it comes to operating the legacy system during the modernization process,
we usually distinguish between two general approaches. The first possibility is to stop
any further maintenance or updates of the legacy system. It is even possible to shut
down the software system completely until the reworked system is ready for operation.
The new application is then released in a big bang and replaces the legacy system in
one step. The second choice is to continue operating and further developing the legacy
application alongside the modernizing efforts. However, it is recommended that the further
development of the legacy system should be kept at a minimum [Blanch 2017]. Instead,
components with the highest need for updates or maintenance should be considered as
first candidates for the extraction and the redevelopment into microservices. Especially
brownfield projects often enable such a more iterative modernization approach. Exemplarily,
the development of every new feature for the monolithic software system is directly

20

3.2. Approach for Analyzing in|FOCUS

developed as its own microservice. Over and above that, parts of the monolith can be
extracted and realized as a microservice one after another [Fowler 2015; Blanch 2017].
In comparison to the big bang approach, this strategy reduces the risk of far-reaching
service failures of the software system. Furthermore, invaluable experience can be gained
by designing and testing a microservice by incorporating the service into the operative
legacy system. Non-ideal design decisions can be reviewed and reworked. This knowledge
can be transferred to the more successful development of the next microservice.

Nonetheless, the development of a microservice architecture can be overwhelming
when the necessary experience with the design and implementation of distributed software
systems is missing or insufficient. That is why, an intermediate step is often suggested
[Fowler 2015]. One option is not to move directly from a monolith to microservices but
rather towards a self-contained systems architecture instead [Hasselbring and Steinacker
2017]. Self-contained systems (SCSs) are based on the main concepts of microservices.
They enforce service isolation, a missing centralized infrastructure and the organizational
alignment with the application structure. Compared to microservices, SCSs tend to partition
an application into fewer subsystems. Thus, the architecture is often less complex and more
accessible to inexperienced developers. Furthermore, SCSs can be divided into smaller units
which can be realized by microservices. Therefore, SCSs naturally support the iterative
modernization process of a monolithic software system towards a microservice architecture
by overcoming the complexity of the modernization in a divide-and-conquer fashion. For
further details of SCSs, see Section 2.3.

3.2 Approach for Analyzing in|FOCUS

As outlined in Section 1.2, this thesis aims at performing a structural analysis of the
architecture and the database of the software system in|FOCUS (Section 2.10). This anal-
ysis provides an initial division of the system into multiple SCSs. Thereafter, additional
investigations partitions chosen SCSs into more fine-grained microservices. For that, we
orientate ourselves on the proposed modernization processes of Bindick and Stoye [2018]
and Martincevic [2016]. Both base their methods on main ideas of the domain-driven design.
The key concept is the incorporation of the environment of the application, namely its
domain, into the planning and the development process. The domain analysis and domain
modeling provide the required in-depth information which is necessary for finding a suit-
able decomposition of the software system. Especially when it comes to legacy applications
with insufficient documentation of the implemented business logic, this step is essential
[Bindick and Stoye 2018].

Therefore as a first step, we analyze and model the in|FOCUS domain, namely the
lottery application domain, in order to familiarize ourselves with the requirements and
characteristics of this environment. The domain model visualizes and abstracts the involved
business objects of the domain and their relationships to each other with the help of a
ubiquitous language. For further information, see Section 2.4. As a next step, the domain

21

3. Analysis of a Monolithic Application

model is divided into multiple cohesive and independent subdomains, called bounded
contexts, which aim to represent the boundaries of our SCSs. However, the exact dimensions
of each bounded context within the domain is neither always clear nor unambiguous.
Therefore, we divide this challenge into multiple sub-problems. As suggested by Knoche
and Hasselbring [2018], we define a set of indispensable service operations of an application
of the lottery domain. These service operations enable us to specify a certain provided
behavior of the lotto software system whose boundaries and dependencies can be more
easily analyzed. Next, each defined use case is assigned to fitting objects of the ubiquitous
language. These objects represent possible subdomains. The resulted allocation provides
us with a first impression of possible bounded contexts and their relationship to another.
Section 3.3 discusses the process and the results of the domain analysis of in|FOCUS.

After gaining essential insights into the lottery domain and its bounded contexts,
we utilize the static software structure analysis tool Structure101 for recognizing the
previously defined service operations inside the in|FOCUS software application. Each
service operation represents a set of to each other dependent Java classes and packages
which implement the service operation functionality. Here, Structure101 is the main tool
for the dependency analysis. Thereafter, the classes and packages can be mapped onto the
subdomains of the lottery domain model. It is based on the previous assignment of the
service operations to the subdomains of the domain analysis. The goal is to determine
highly cohesive and loosely coupled components in order to draw the boundaries of the
bounded contexts. This results in a first division of the in|FOCUS software system into
bounded contexts which can be realized as SCSs. Section 3.4 examines the static analysis of
in|FOCUS further.

Thereafter, we expand on the results of the static analysis with the help of the live
trace visualization tool ExplorViz. By dynamically analyzing the behavior of the in|FOCUS
application, we confirm the previously drawn borders and divide the SCSs of the system
further into more fine-grained microservices. Section 3.5 presents the conducted dynamic
analysis of in|FOCUS and its results.

A software modernization process does not only focus on the software architecture but
also takes the data model of the software application into account. In order to develop
independent services, each of them must own its own state on top of its logic. Consequently,
the next step of this analysis process is to investigate a possible division of the data model
of in|FOCUS. Accordingly, the accessed database tables of each service operation are
identified with the help of both the database administration tool DBeaver and the database
access logging of log4jdbc. Afterwards, the aggregation of all accessed database tables
by the service operations of a bounded context summarizes the necessary data for this
subdomain. By repeating this for all bounded contexts, the data model is mapped onto
the domain model. Section 3.6 reviews the conducted database analysis of in|FOCUS in
further detail.

22

3.3. Domain Analysis of in|FOCUS

3.3 Domain Analysis of in|FOCUS

The first step of the analysis process is the familiarization with the domain of the lottery
software system in|FOCUS. The necessary knowledge is gathered with the help of provided
customer requirements documentation by adesso. As these documents contain sensible
business information, extracts cannot be shared in this thesis. On top of that, qualitative
interviews and discussions with software developers and domain experts of the in|FOCUS
system grant the required understanding for the object of study. This research process is
guided by the following investigative questions:

Q1 Who are the actors in the lottery application domain?

Q2 How can you describe the relationship of these actors?

Q3 Which service operations does a lottery application need to provide to these actors?

Q4 How can these service operations be mapped onto domain business objects?

Q5 How can these business objects be grouped into bounded contexts?

By answering these questions, we do not only inform ourselves about the domain but also
create an essential commonly defined vocabulary. This vocabulary is then seen as part of
the ubiquitous language which is required for further DDD analysis.

Actors of the lottery application domain

Table 3.1 answers Q1 and gives an overview of the involved actors in a lottery software
system. Generally, we distinguish between the Lottery Application Users, the State Lottery
and Others. Customers of the lottery application represent a subset of Users who actively
engage with the offered products of the software system.

Relationship of the Domain Actors

Figure 3.1 models the relationships of these actors to each other (Q2). As expected, the
lottery application represents the center of the relationship model as it connects every
other actor with one another. The state lottery provides a game catalog to the application
which offers the whole variety of games to the customers. Moreover, the lottery software
submits the filled out lottery tickets to the state lottery which in response transfers the
lottery drawing results back. Other than that, the customer makes use of other possible
services of the application, such as special events or newsletters. Apart from the customers,
there are other users who use different kinds of services of the software system. Exemplary,
a marketing specialist is able to collect customer behavior data for research purposes from
the lottery application. The lottery software system makes use of certain other services
for collecting specific information on the users. As mentioned in Table 3.1, these services

23

3. Analysis of a Monolithic Application

Table 3.1. Actors in the Domain of a Lottery Software System.

Lottery Application The lottery application provides lottery games and other lottery
related services such as newsletters to their users.

User Users incorporate every person that uses or administrates the
lottery software system in any way.

Customer Customers are a subset of users who buy products or other
services of the application.

State Lottery The state lottery provides lottery games for the lottery application
that the customer can play. The state lotteries then determine
the lottery winners on predefined dates and notifies the lottery
software system accordingly.

Other This group summarizes every other actor that is involved in the
lottery process and not mentioned above. Exemplary members
of this group is the state government which enacts lottery laws.
An other central member of this group is the OASIS system
which logs every banned player in order to counteract gambling
addiction.

include the database for banned players OASIS or the German credit bureau SCHUFA.
The only relation that does not include the application is the one between the state lottery
and the “Other” group. Precisely, the government does not only enforce restrictions and
policies on the lottery software, but also on the state lotteries themselves. However, later on,
we are only interested in the relations of the lottery application since this is the target object
of development. Further relationships between either others or the state lottery and the
users are possible. But, neither are these relations part of the context of the lottery software
system domain nor can we be sure about them due to a lack of information. Therefore,
these relationships are not included in our model.

Service Operations of the Lottery Application Domain

For answering Q3, we identify the possible service operations (SO) according to the
relationships of the lottery application to other actors of the domain. We group the service
operations of the software system, depending on the involved actors. Table 3.2 depicts a
sample of the service operation list for the lottery software system. The entries for each
group show some of the related essential service operations. A customer has to be able
to log into the customer account and transfer money from his or her bank account to
the online wallet of the lottery application. As follows, the buyer can pay for a lottery
ticket after having filled in a relevant form. An administrative user of the lottery software
system might want to be able to assign administrator rights to other accounts and to gather
customer behavior data.

24

3.3. Domain Analysis of in|FOCUS

Lottery Application

games,
drawings,
lottery tickets games,

services

services,
rules, ect.

rules

Other

State Lottery

Users

Customers

Figure 3.1. Actors of the lottery software system domain and how they are related to each other.

Furthermore, the lottery application submits the filled out lottery tickets to the state
lottery and then awaits their notice to import the results of the drawings. Lastly, the
lottery application has to check SCHUFA and OASIS in order to determine whether a new
customer is allowed to play the lottery games. As soon as a customer approves and wants
to transfer money to his lottery online wallet, the selected payment method gets invoked.
For a complete list of the service operations, see Section A of the Appendix.

Table 3.2. An excerpt from grouped service operations (SO) of the lottery application.

Customer SO
Login customer
Transfer money to online wallet
Fill out lottery ticket

User SO Assign role
Gather customer data

State Lottery SO Submit lottery tickets
Receive lottery drawing results

Other SO
Request SCHUFA information
Check OASIS entry
Invoke payment method

Mapping the Service Operations onto Domain Business Objects

After determining the service operations, they have to be mapped onto domain business
objects (BO). A BO is part of the ubiquitous language which represents parts of the
functionality of a software system. Table 3.3 shows the SO-BO mappings of the previously
examined SOs of Table 3.2 in order to answer Q4. It becomes apparent that certain SOs,

25

3. Analysis of a Monolithic Application

such as “Transfer money to online wallet” are mapped onto multiple BOs. These kinds
of SOs often describe an application process that either is used in multiple scenarios or
which is more far-reaching and therefore affects more than one BO. A complete list of the
mappings is shown in Section B of the Appendix.

Figure 3.2 illustrates the domain BOs and their relations to each other. The domain
is divided into twenty BOs. Each of them represents certain functionalities of the lottery
application. In order to provide a comprehensive impression of the whole lottery application
domain, this set of BOs is not limited to the SOs of Table 3.2, but includes every defined
SO of Section B of the Appendix. The directed arrows in this figure illustrate the relation
between two BOs. The meaning of the relation A Ñ B differs slightly, depending on the
context of both objects. It can mean that “A provides B”, that “A uses B”, or that “A is
connected to B”.

Table 3.3. An excerpt from mapped service operations to business objects.

Customer Account Login customer
Online Wallet Transfer money to online wallet

Payment Method Transfer money to online wallet
Invoke payment method

Lottery ticket Fill out lottery ticket

User Account Assign role
Gather customer data

Ticket Submission Submit lottery tickets
Receive lottery drawing results

Customer Verification Request SCHUFA information
Check OASIS entry

Division of the Domain Model into Bounded Contexts

The final step aims at partitioning the domain model and its BOs into bounded contexts. The
dependencies between each bounded context should be kept to a minimum. Consequently,
the cohesion between BOs of the same bounded context should be higher than to other
BOs. Most likely, multiple different divisions of the domain are possible. Figure 3.3 depicts
a possible classification. The domain is described by the following five bounded contexts:

The Customer context contains every functionality of the customer account. It provides
private information of the customer such as banking information or the balance of the
personal online wallet.

The Gaming context combines every part of the application for providing, carrying out,
and managing different lottery games. Furthermore, the winner determination and
notification are also part of this context.

26

3.3. Domain Analysis of in|FOCUS

The Marketing context provides different marketing instruments such as creating newslet-
ters or gathering and analyzing the customer behavior.

The Payment context handles all outgoing and incoming money transactions as well as
provides different payment options to the customer.

The Administrative context encompasses organizational functionalities such as the user
and role management of the software system.

This concludes the domain analysis. We established a solid foundational understanding of
the lottery application domain, its involved actors, and required business objects. Further-
more, we developed an initial division of the domain into bounded contexts. The following
sections take the above presented results as a basis for further static and dynamic analyses
of the lottery software application in|FOCUS.

Customer
Verification

Customer
Account

Customer Card

Personal
Information

Subscription

Banking
Information

Online Wallet

Gaming Limit

Game Catalog

Lottery Ticket

Newsletter

Customer
Behavior
Analysis

Winner

Ticket
Submission

Payment
Method

Transaction

Prize

Lottery
Drawing

Administration

User Account

Figure 3.2. Business objects of the lottery software system domain and their relations to each other.

27

3. Analysis of a Monolithic Application

Customer
Verification

Customer
Account

Customer Card

Personal
Information

Subscription

Banking
Information

Online Wallet

Gaming Limit

Game Catalog

Lottery Ticket

Newsletter

Customer
Behavior
Analysis

Winner

Ticket
Submission

Payment
Method

Transaction

Prize

Lottery
Drawing

Administration

User Account

Customer Marketing Payment Administrative

Gaming

Figure 3.3. Partitioning of the domain model into bounded contexts.

28

3.4. Static Analysis of in|FOCUS

3.4 Static Analysis of in|FOCUS

The previous Section 3.3 presented the results of the domain analysis of a lottery application.
We base our further investigations on these findings. Therefore, the first goal of this static
analysis process is to transfer the newly gained knowledge onto the existing in|FOCUS
application. However, before analyzing the software architecture itself, the in|FOCUS
project and its internal package structure is introduced.

3.4.1 Introduction to the in|FOCUS Project

Figure 3.4 gives an overview of the package structure of the in|FOCUS application. Each
package and its main functionality of the infocus-core Java project is described in Table 3.4.
It is noted that each of the presented packages has several sub-packages. Although, dis-
cussing every single package would go beyond the scope of this chapter. The application is
deployed on a cross-platform JBoss Enterprise Application Plattform (EAP) 6.31, nowadays
known as WildFly Application Server. A further introduction of the in|FOCUS software
system is given in Section 2.10.

infocus-core

componentchannelcommon

campaign

channel
management

client

customercard

eod

externalservices

gameprocessing

gatewayserver
adapter

prizeanalyzer

prizedataimport

subscriptionsinstantlottery

management

monitoring

newsletter reporting

services tsubscriptions

usermanagement

zgw

subledger

Figure 3.4. Structural overview of the in|FOCUS project.

1https://www.redhat.com/de/technologies/jboss-middleware/application-platform, accessed 05.06.2019

29

https://www.redhat.com/de/technologies/jboss-middleware/application-platform

3. Analysis of a Monolithic Application

Table 3.4. Package descriptions of the in|FOCUS application.

Package Name Description
channel Collection of different SMS template requests as well as

the functionality for SMS messaging to the in|FOCUS
customer.

common Functionalities which are commonly used throughout
the project.

component.channelmanagement Management of supported channels of in|FOCUS.
component.client Management of clients and mandates of in|FOCUS.
component.customercard Management and administration of customer cards

which enable the customer to play which their
in|FOCUS customer account at local lottery offices.

component.eod Management of end-of-day functionalities.
component.externalservices Connection and management of utilized external ser-

vices. Processes incoming and outgoing requests for
customer verification and customer cards. Additionally,
it connects to available payment method services.

component.gameprocessing Handles involved processes for lottery gaming and sub-
scription, ticket submissions, and lottery results.

component.instantlottery Functionality for playing instant lottery (e.g. scratch
cards) and handling the winnings.

component.management Managing different configurations and parameters for
system monitoring.

component.monitoring Handles the application monitoring.
component.newsletter Creates, manages, and distributes newsletters to cus-

tomers.
component.prizeanalyzer Determines the prizes for the winners of a lottery.
component.prizedataimport Receives and processes the prizes of different lotteries.
component.reporting Manages the compilation and distribution of system

reports.
component.services Contains a set of services for different functionalities

of the application (e.g. user verification, change game
limits, customer notification).

component.subledger Handles a set of payment methods as well as incoming
and outgoing payment processes.

component.subscriptions Functionality for managing of lottery game subscrip-
tion.

component.tsubscriptions Manages terrestrial subscriptions.
component.usermanagement Manages user and customer accounts, as well as con-

nected functionalities (e.g. login, identification, account
data).

components.zgw Management of material prizes or lottery winnings
above 5000€.

30

3.4. Static Analysis of in|FOCUS

3.4.2 Analyzing in|FOCUS with Structure101

After familiarizing ourselves with the internal structure of in|FOCUS, the next goal is to
statically analyze the relations and dependencies between the in|FOCUS components. As
previously mentioned in Section 3.2, the approach for this static analysis consists of two
major steps. First, we discover the service operations defined in Section 3.3 withing the
in|FOCUS project. Therefore, the in|FOCUS packages are assigned to the different SOs
which in|FOCUS implements. Secondly, we investigate the dependencies of these packages
with the help of Structure101 (Section 2.5).

In order to analyze the package dependencies, the in|FOCUS .jar-files are imported into
a new Structure101 project. Structure101 comes with an array of different analysis tools for
investigating the dependencies of the in|FOCUS packages. One of these tools is the levelized
structure map which is depicted by Figure 3.5. Here, the blue arrows represent general
dependencies. The direction of the arrow indicates whether a package either uses or is used
by another package. As an example, Figure 3.5 shows the dependencies of customercard as
well as the packages which use customercard. This structure map illustrates the complexity

Figure 3.5. Levelized structure map for the customercard package.

31

3. Analysis of a Monolithic Application

and the entanglement within the inner structure of the in|FOCUS project. The customercard

package is dependent on approximately half of the other component packages of the same
level within the file structure. This is the case for most of the other component packages
as well. Therefore, the main tool for the dependency analysis is the collaboration list of
Structure101 which is illustrated by Figure 3.6. This feature lets us selectively choose
information and simplifies the focused examination on single dependencies. Just like
Figure 3.5, Figure 3.6 shows the dependencies of customercard, however, as a list. Here, the
dependencies of the selected package on the left are highlighted on the right of the user
interface. The number above the arrow in the middle represents the number of dependent
calls within the code inside the selected package. Hence, there are 687 different points
inside the source code of customercard which are dependent on parts of the highlighted
packages on the right. The given number can indicate a rough estimate on the degree of
entanglement of a package. For reference, the number of dependencies for the sub-packages
of component range from 10 (channelmanagement) to 2500 (gameprocessing).

Table 3.5 presents an excerpt from the package assignments resulting from the static
dependency analysis. It shows a list of the above discussed service operations (Table 3.2)
and their involved in|FOCUS packages. For a complete list, see Section C of the Appendix.
Since we already assigned the service operations to our BOs (Table 3.3) as well as organized
these very BOs into bounded contexts (Figure 3.3), we obtain a direct assignment of the
in|FOCUS packages to the bounded contexts. This leads to a first division of the in|FOCUS
application after assigning every package to its respective bounded context. Figure 3.7 on
page 35 illustrates the assignment and the therefore resulting division for the previously
discussed packages. Moreover, Figure 3.8 on page 35 summarizes the resulting bounded
contexts with their respective packages as well as the relations in between the bounded
context.

Customer contains the main functionality of the customer account management, provided
by the package usermanagement. This includes the account creation, login and logout,

Figure 3.6. Collaboration list of the customercard package.

32

3.4. Static Analysis of in|FOCUS

Table 3.5. An excerpt from mapping the in|FOCUS packages to the service operations.

Login customer

component.usermanagement

component.services

component.common

component.subledger

Transfer money to online wallet component.subledger

Fill out lottery ticket component.gameprocessing

Assign user role component.usermanagement

Gather customer data component.reporting

component.monitoring

Submit lottery tickets component.gameprocessing

Receive lottery drawing results component.gameprocessing

Request SCHUFA information
component.services

component.externalservices

component.usermanagement

Check OASIS entry
component.externalservices

component.usermanagement

component.services

Invoke payment method component.subledger

component.externalservices

as well as the editing of personal information. For these use cases, identity verification
services as well as external SCHUFA or OASIS checkups are made accessible by services

and externalservices. Furthermore, the customer card management and the personal
online wallet are part of the Customer subdomain. A customer card entails the necessary
customer account information for offline gaming at local lottery offices. Hence, the
games played with the customer card are then credited to the online customer account.
However, a customer card can exist without ever being used for gaming and can be
seen as an extension of the customer account.
Consequently, we assigned the customer card management to the Customer bounded
context, rather than to the Gaming bounded context. Since ordering and paying for a
new customer card is also part of the customer card management, certain functionalities
of the subledger are also part of the Customer subdomain. In order to complete the
payment process, the Customer bounded context is dependent on the Payment context.
Additionally, a customer is able to transfer money from his or her bank account to the
personal online wallet to enable a straightforward gaming experience. This use case
utilizes the same payment process as the ticket acquisition.

Gaming summarizes the gaming functionality of in|FOCUS. The customer chooses a lottery
game from a provided game catalog, fills out a lottery ticket and creates a game order
(gameprocessing). A game order can be seen as a receipt which tracks played games

33

3. Analysis of a Monolithic Application

not only for the customer but also for the software system. The ascription to the
customer account creates the illustrated dependency between Gaming and Customer.
The application also provides instant lotteries such as online scratch tickets. The instant
lotteries are immediately resolved. The conventional lottery games however are resolved
at a certain date. Thereafter, the drawing results are imported (prizedataimport) and
the individual prize of each winner is determined (prizeanalyzer).
Alternatively, the customer can also subscribe to certain games. A subscribed game
is repeatedly played for a defined period of time. Naturally, the lottery ticket and
the subscriptions have to be paid for. Hence, the gaming process is dependent on the
Payment context. The same dependency can be found in the package zgw, which stands
for “central winnings management”. As the name suggests, it manages the winnings of
the customer. Winnings are either transferred back to the personal online wallet or to
the bank account of the customer.

Payment is designed to handle and to take account of all incoming and outgoing money
transactions (subledger) and provides different payment methods to the customer
(externalservices). In order to receive the up-to-date banking information or the online
wallet ID of the customer, Payment is dependent on Customer.

Marketing provides newsletters which the customer can subscribe to. As long as the
customer is subscribed to a newsletter, a notice, either through the website or via e-mail
(services), is received. Lottery operators can create or edit newsletters. In order to
promote these newsletters to potentially interested customers, they can define a target
group to which the newsletter is presented more vividly. This promotion process creates
the shown dependency between Marketing and Customer.

Adminstrative comprises the reporting and monitoring services of the application. The
customer activity as well as the performance and the load of the software system can be
tracked. System reports are created continuously and distributed to the appropriate au-
thority (services). Furthermore, this context manages the administrative user accounts
and their rights (usermanagement). The collection and monitoring of the system’s activity
create the depicted dependencies to all other contexts of the in|FOCUS system.

34

3.4. Static Analysis of in|FOCUS

Customer
Verification:

services
externalservices
usermangement

Customer
Account:

usermanagement
services

Customer Card

Personal
Information

Subscription

Banking
Information

Online Wallet:
subledger

Gaming Limit

Game Catalog

Lottery
Ticket:

gameprocessing

Newsletter

Customer
Behavior
Analysis

Winner

Ticket
Submission:
gameprocessing

Payment
Method:
subledger

externalservices

Transaction

Prize

Lottery
Drawing

Administration

User Account:
usermanagement

reporting
monitoring

Customer Marketing Payment Administrative

Gaming

Figure 3.7. Assignment of a selection of in|FOCUS packages to the appropriate BOs (bold)
of the domain.

Customer:
usermanagement
customercard

services
externalservices

subledger

Marketing:
newsletter

usermanagement
services

Payment:
subledger

externalservices

Gaming:
gameprocessing
tsubscriptions
instantlottery
prizeanalyzer
prizedataimport

services
zgw

Administrative:
reporting
monitoring
services

usermanagement

Figure 3.8. End results of the static analysis define the bounded contexts of the
in|FOCUS application and their dependencies to each other. Each
bounded context contains a set of in|FOCUS packages.

35

3. Analysis of a Monolithic Application

Now that the lottery application in|FOCUS is divided into distinct bounded contexts, the
next step in the architecture modernization process would be to define the borders of the
SCSs along the boundaries of said bounded contexts. However, the current partitioning
does not fully support the main concepts of SCSs. In order to focus on the more prevailing
challenges to the modernization process, the Administrative context is left out of the further
discussion of the software architecture division.

Generally speaking, SCSs are supposed to be defined as highly independent, cohesive
units which are able to perform their key functionalities on their own with only minimal
dependencies to other subsystems. Here, both the Customer and the Gaming service are
dependent on the Payment component and are unable to perform certain core use cases
on their own. Hence, a customer cannot successfully acquire a customer card or play a
lottery game when the Payment system is unavailable at that moment. One can argue
that buying a customer card is not one of the primary functionalities of its subsystem.
Therefore, it would be acceptable to asynchronously forward the buying request to the
Payment service. Nonetheless, this position is harder to defend when it comes to playing a
lottery game. In this case, it would be preferable to successfully play a game without any
major dependencies to other services. Therefore, we present four possible alternatives to
address this problem and discuss their pros and cons. Figure 3.9 depicts each alternative.

1. The first alternative is to redefine when the use case of filling out and submitting
a lottery ticket is considered successful for the Gaming context. Up to then, it was
considered to be completed after the game order of the lottery ticket was created and
paid for. As an alternative, we can consider the use case for the Gaming service to be
completed right after the game order has been created. Completing the payment process
is then part of the Payment context. The game order fails when the payment process
has not been completed until the ticket submission deadline of the lottery game. In this
case, the Payment service informs the Gaming component. Therefore, an asynchronous
communication protocol between Payment and the other services would in this case
suffice. Figure 3.9a depicts this configuration. This way, the dependencies between the
services do not change. However, each SCS can now independently complete their own
use cases.

2. Secondly, we can merge the Payment and Gaming services as illustrated in Figure 3.9b.
The resulting SCS can independently complete the whole gaming process, from game
order creation, ticket submission to its payment. However, this SCS would be huge
in size and would represent a small monolith itself. Also, the dependency between
Customer and Payment when buying a customer card still remains.

3. The resulting monolithic-like service of the second alternative (Figure 3.9b) can be
counteracted by dividing the Gaming service itself into smaller parts. One possibility
is the division into offline and online games. This breakdown is shown in Figure 3.9c.
Offline Gaming manages every game which the customer played offline, e.g. with his or
her customer card at a lottery office or in form of a TSubscriptions. A TSubscription is

36

3.4. Static Analysis of in|FOCUS

Customer

Marketing

Payment

Gaming
async

async

(a) Asynchronous communication to Payment service.

Customer

Marketing

Gaming

Payment

(b) Merging Gaming and Payment service.

Customer

Marketing

Online Gaming

Payment

Offline Gaming

(c) Dividing Gaming into Online Gaming and Offline Gam-
ing.

Customer

Marketing

Gaming

PaymentPayment

(d) Multiple Payment components.

Figure 3.9. Four architectural alternatives for addressing the dependency problem with the Payment
service.

an offline game subscription where the customer assigns a lottery offline to play a filled
out lottery ticket repeatedly until the subscription is canceled. Since the Offline Gaming
service does not need a connection to the Payment service, it reduces the size of Gaming
without creating new dependencies which affect the successful completion of its own
major use cases.

4. The last discussed alternative is the assignment of an individual payment service for both
Gaming and Customer, see Figure 3.9d. The resulting modified SCSs can independently
complete their core functionalities. Next to the size problem, the subledgers of both
Payment components need to be synchronized at some point, e.g. when creating a bank
statement. The highly frequented requests for the Payment components increase the
challenge for providing a reasonably eventual data consistency.

This concludes the static analysis of the in|FOCUS architecture. To summarize, we divided
the application into distinct bounded contexts which can be realized as SCSs. Thereafter,
we saw potential for further improvement of the initial segmentation in order to reduce
the dependencies of both the SCSs Customer and Gaming. Four alternative adjustments to

37

3. Analysis of a Monolithic Application

the architecture were presented. Section 3.5 discusses the next step of the modernization
process. The dynamic behavior analysis of in|FOCUS with the help of ExplorViz is based
on the previous findings of the static analysis and aims at verifying and refining previous
architectural design decision.

3.5 Dynamic Analysis of in|FOCUS

The dynamic architectural analysis of the in|FOCUS software architecture builds on the
previous findings of the static analysis. Furthermore, the live trace visualization tool
ExplorViz is utilized to verify and refine the previously made architectural design decision.
In order to enable the gathering of monitoring data with the help of Kieker probes and the
following analysis as well as the visualization of ExplorViz, several configurations have to
be made. The necessary setup is shown in the following section Section 3.5.1. For a more
detailed introduction on how Kieker and ExplorViz work, see Section 2.6 and Section 2.7.

3.5.1 JBoss and Kieker Configurations

The software application in|FOCUS is deployed by a Red Hat JBoss EAP 6.3 application
server. We define the base directory of this JBoss as jboss-eap-6.3 for the remainder of this
section. The necessary setup for enabling the monitoring of in|FOCUS with ExplorViz is
comprised of the following six steps:

Defining a JBoss module for Kieker

In order to integrate Kieker into the JBoss startup, Kieker first has to be defined as a JBoss
module. Therefore, we create a module.xml in the directory

jboss-eap-6.3/modules/system/layers/base/kieker/main/

together with the kieker-1.13.jar. Listing 3.1 shows the content of the module.xml. The
module is named kieker and defines the resource path of the Kieker .jar file.

Listing 3.1. Configuration of a JBoss module for Kieker of module.xml

1 <module xmlns="urn:jboss:module:1.3" name="kieker">

2 <resources>

3 <resource-root path="kieker-1.13.jar"/>

4 </resources>

5 <dependencies>

6 </dependencies>

7 </module>

38

3.5. Dynamic Analysis of in|FOCUS

Defining a JBoss module for AspectJ

A second JBoss module has to be defined for AspectJ in order to successfully weave the
Kieker probes into the byte code of in|FOCUS. The module in the directory

jboss-eap-6.3/modules/system/layers/base/org/aspectj/main/

and includes a module.xml and the aspectjweaver-1.8.9.jar. Listing 3.2 shows the content
of the module.xml. The module name is defined as org.aspectj and points to the path of
the AspectJ .jar file.

Listing 3.2. Configuration of a JBoss module for AspectJ of module.xml

1 <module xmlns="urn:jboss:module:1.1" name="org.aspectj">

2 <resources>

3 <resource-root path="aspectjweaver-1.8.9.jar" />

4 </resources>

5 <dependencies>

6 </dependencies>

7 </module>

Defining a JBoss module for LogManager

We utilize the JBoss LogManager framework to enable logging processes for deployed
applications. Therefore, we define a JBoss module located in the directory

jboss-eap-6.3/modules/system/layers/base/org/jboss/logmanager/main/

which contains the module.xml and the jboss-logmanager-2.0.3.Final-redhat-1.jar. List-
ing 3.3 shows the content of the module.xml. Here, the module org.jboss.logmanager points
to the LogManager .jar file and defines its necessary dependencies.

Listing 3.3. Configuration of a JBoss module for LogManager of module.xml

1 <module xmlns="urn:jboss:module:1.1" name="org.jboss.logmanager">

2 <resources>

3 <resource-root path="jboss-logmanager-2.0.3.Final-redhat-1.jar"/>

4 </resources>

5 <dependencies>

6 <module name="javax.api"/>

7 <module name="org.jboss.modules"/>

8 <module name="org.jboss.as.logging" services="import"/>

9 </dependencies>

10 </module>

39

3. Analysis of a Monolithic Application

Declaring the Kieker and AspectJ modules as global

As a next step, it is necessary to declare both the above defined Kieker and the AspectJ
modules as global JBoss modules in order to add these modules as dependencies for every
Java application deployment2. To this end, the jboss:domain:ee:1.2 subsystem entry of the
configuration file

jboss-eap-6.3/standalone/configuration/standalone.xml

has to be edited. Here, both modules are defined as global JBoss modules, as depicted in
Listing 3.4.

Listing 3.4. Specification of Kieker and AspectJ as global modules of standalone.xml

1 <subsystem xmlns="urn:jboss:domain:ee:1.2">

2 <global-modules>

3 <module name="kieker"/>

4 <module name="org.aspectj"/>

5 </global-modules>

6 <spec-descriptor-property-replacement>false</

spec-descriptor-property-replacement>

7 <jboss-descriptor-property-replacement>true</

jboss-descriptor-property-replacement>

8 <annotation-property-replacement>false</annotation-property-replacement>

9 </subsystem>

Setting up the required Kieker files

Furthermore, the required Kieker aop.xml and the kieker.monitoring.properties, are com-
prised in

jboss-eap-6.3/kieker/ .

The aop.xml file specifies the type of Kieker probe that should be used for the gathering of
monitoring data. Additionally, it defines the application packages that the probes should
be weaved into. Every to be monitored package is established with an include statements.
Alternatively, the exclude instruction can be used to ignore a subset of to be probed
packages.

The kieker.monitoring.properties file configures Kieker and the used file writers
which transfer the gathered data to ExplorViz. For the monitoring of in|FOCUS, the
FullInstrumentationNoGetterAndSetter probe of the type flow.operationExecution was
utilized. Additionally, it is noted that not all but only the majority of in|FOCUS packages
are able to be monitored with Kieker probes due to technical issues with internally used,
customized loggers of the in|FOCUS application. Since these loggers also use AspectJ for

2https://docs.jboss.org/author/display/WFLY8/Subsystem+configuration, accessed 10.06.2019

40

https://docs.jboss.org/author/display/WFLY8/Subsystem+configuration

3.5. Dynamic Analysis of in|FOCUS

weaving in own probes for data collection, it is assumed that an overwriting of AspectJ
annotations is the cause of the problem. Moreover, these loggers cannot be disabled since
they are essential for certain core functionalities of the in|FOCUS application.

Configuring the startup script of JBoss

The final step of the setup is setting the correct Java variables for the JBoss startup in order
to allow a successful monitoring of the deployed application with ExplorViz. Hence, the
JBoss startup script

jboss-eap-6.3/bin/standalone.conf.bat

has to be customized. The required additions, shown in Listing 3.5, are based on the official
Kieker documentation3.

Listing 3.5. Necessary additions of the JBoss startup script standalone.conf.bat.

1 rem ## Make these system packages visible for JBoss. The packages byteman,

logmanager and manageenginie are necessary to enable monitoring for java

applications.

2 set "JAVA_OPTS=%JAVA_OPTS% -Djboss.modules.system.pkgs=

3 org.jboss.byteman,org.jboss.logmanager,com.manageengine,org.aspectj,kieker"

4
5 rem ## Define the AspectJ weaver as a Java agent.

6 set "JAVA_OPTS=%JAVA_OPTS% -javaagent:/path/to/jboss-eap-6.3/modules/system/layers

/base/org/aspectj/main/aspectjweaver-1.8.9.jar"

7
8 rem ## Set LogManager as the to be used logging manager.

9 set "JAVA_OPTS=%JAVA_OPTS% -Djava.util.logging.manager=org.jboss.logmanager.

LogManager"

10
11 rem ## Set the classpath for the used modules logmanager, kieker and aspectj

weaver.

12 set "JAVA_OPTS=%JAVA_OPTS% -Xbootclasspath/p:

13 /path/to/jboss-eap-6.3/modules/system/layers/base/org/jboss/logmanager/main/

jboss-logmanager-2.0.3.Final-redhat-1.jar;

14 /path/to/jboss-eap-6.3/modules/system/layers/base/kieker/main/kieker-1.13.jar;

15 /path/to/jboss-eap-6.3/modules/system/layers/base/org/aspectj/main/

aspectjweaver-1.8.9.jar"

16
17 rem ## Configure the Kieker monitoring by setting the required paths.

18 set "JAVA_OPTS=%JAVA_OPTS% -Dkieker.monitoring.configuration=

3https://kieker-monitoring.atlassian.net/wiki/spaces/DOC/pages/24215574/Using+Kieker+in+Different+Java+EE+

Environments, accessed 10.06.2019

41

https://kieker-monitoring.atlassian.net/wiki/spaces/DOC/pages/24215574/Using+Kieker+in+Different+Java+EE+Environments
https://kieker-monitoring.atlassian.net/wiki/spaces/DOC/pages/24215574/Using+Kieker+in+Different+Java+EE+Environments

3. Analysis of a Monolithic Application

19 /path/to/jboss-eap-6.3/kieker/kieker.monitoring.properties"

20 set "JAVA_OPTS=%JAVA_OPTS% -Dkieker.monitoring.skipDefaultAOPConfiguration=true"

21 set "JAVA_OPTS=%JAVA_OPTS% -Dorg.aspectj.weaver.loadtime.configuration=

22 file:/path/to/jboss-eap-6.3/kieker/aop.xml"

3.5.2 Analyzing the Behavior of in|FOCUS with ExplorViz

For the dynamic analysis of the in|FOCUS application, we focus on certain parts of the
architecture based on the static analysis results. There are two reasons for this decision.
First, we want to verify and improve the previously made architectural design decisions.
Secondly, certain technical limitations of the current state of ExplorViz at the time of this
thesis requires us to limit the number of probed packages. Therefore, we are not able to
monitor every package of in|FOCUS at once but only a subset. Therefore, only the most
prominent and impactful packages for the examined service operations of the static analysis
are identified and included for monitoring.

The dynamic analysis of in|FOCUS has the following two goals: First, we want to
discover possible microservices within the software architecture to divide the resulting
SCS architecture of the static analysis further. As an example, we present the discovery
of two possible microservices. Secondly, we continue the idea of Figure 3.9a and further
investigate its presented solution for the “Payment-Problem”. To recapitulate, we address
the problematic dependencies of both the Customer and Gaming services to the Payment
service. The three service operations that were initially dependent on the functionality of
Payment are “buying a customer card”, “buying lottery tickets” and “transferring money
to the online wallet”. However, after statically analyzing the problem, we came up with a
number of different solutions, shown by Figure 3.9. One possibility is to redefine the limits
of the respective service operations and the responsibilities of each service. This enables
us to let the involved services communicate asynchronously with each other while still
meeting the independence requirements of SCSs. Therefore, we investigate this approach
further in this chapter.

Discovering new microservices with the help of ExplorViz

One of the analyzed service operations is the selection and the completion of a lottery
ticket. The monitored behavior of in|FOCUS is depicted in Figure 3.10. This use case can
be divided into following four distinct steps:

1 Inside the gatewayserveradapter package, a lottery manager is invoked for the appropri-
ate lottery game which was selected by the customer. The necessary lottery information
such as drawing dates is collected and the lottery ticket is created. Furthermore, the
delivery of the required lottery ticket attributes is done by the internal functionality of
the persistence sub-package in order to assemble the actual ticket. These attributes can
represent different available jackpots or gaming options for the selected game.

42

3.5. Dynamic Analysis of in|FOCUS

2 The involved classes of lotterygameprocessor manage the entirety of the gaming process
of the selected lottery.

3 Here, we obtain the customer data such as the ID and the personal gaming limits which
are required for successfully playing a lottery game as a customer.

4 The lottery package manages the filled out lottery ticket. It tracks the selected fields
and specific gaming strategies of the played lottery ticket.

This use case can be split into two main phases. First, the selected lottery ticket is assembled
by collecting the necessary gaming information. Thereafter, the customer fills out the ticket
and selects different options for his or her game. Here, an opportunity can be found to
define a new microservice. This microservice, which we call TicketManager from now on,
handles the management and the composition of lottery game attributes for the creation
of a specific lottery ticket. Hence, it holds all the available options for each lottery game.
Depending on the customer’s choice, it assembles the necessary information for creating
a lottery ticket that the customer can then fill out. This microservice encapsulates the
functionality of 1 seen in Figure 3.10.

The introduction of this microservice enables the developers to easily define and add
new games to the application. Furthermore, this part of the gaming process can be seen
as a possible bottleneck, depending on the simultaneously requested games. Therefore,

1

2

3

4

Figure 3.10. Monitoring the in|FOCUS behavior with ExplorViz of loading and filling out a lottery
ticket.

43

3. Analysis of a Monolithic Application

the possibility of vertical scaling is desirable. Naturally, the TicketManager needs to submit
the assembled attributes to the Gaming service which handles the further gaming process.
One possibility is the asynchronous communication between services by publishing and
subscribing to events. This communication pattern is called Choreography which is discussed
in detail in Section 3.7.

The next service operation we focus on is accessing customer master data as an ad-
ministrative user via the admin web interface of in|FOCUS. The monitored behavior of
the software system is illustrated by Figure 3.11. As before, this invoked behavior can be
broken down into the following four steps:

1 The permission package is responsible for checking whether the user has sufficient
rights for using internal administrative actions such as checking the customer master
data.

2 Here, the required user information is acquired for checking the user’s permission.

3 The invoked behavior of the identity package confirms the logged-in status of the
administrative user.

4 As the final step, the requested customer master data is gathered and presented.

1

2

3

4

Figure 3.11. Monitoring the in|FOCUS behavior with ExplorViz of accessing customer data as an
administrator.

44

3.5. Dynamic Analysis of in|FOCUS

When we compare the involved classes of an administrative user action to a customer
user action, we can identify a dividing line between them. The main functionality of
the administrative section is mostly handled by classes which are not involved in the
customer functionalities. Therefore, it is possible to outsource separate User service from
the already established Customer service. As a result, the internal size of the later is reduced.
This counteracts a possible devolving of a over-sized SCS into a microlith and makes the
Customer service easier to handle.

Addressing the “Payment-Problem” with the help of ExplorViz

As a next step, we continue the investigation of the idea shown in Figure 3.9a. The goal is
to let the Customer and Gaming services communicate asynchronously with the Payment
service. However, the independence of the owned service operation of each service has to be
maximized. Since the current definition of the service boundaries leads to tight coupling of
the three mentioned services when it comes to buying a product of the lottery application,
we need to redraw these boundaries. Exemplarily, Figure 3.12 shows the system behavior
when a customer transfers money from his registered bank account to his online wallet.
This process can be broken down into the following seven distinct steps:

1 These classes are the centerpiece of this service operation and direct the entirety of the
payment process.

2 Here, the necessary permissions for transferring money to the target online wallet are
checked.

3 Furthermore, general user checks, such as sufficient user rights as well as the user status,
are conducted inside the user package.

4 The customer package delivers the required information on the customer and his or her
associated online wallet.

5 Inside the workflow package, the processing of the selected payment method is managed
and directed.

6 This package is responsible for managing the appropriate business process. For that,
business records are created in order to track the respective process.

7 Here, the account of the customer online wallet, onto which the money is transferred to,
is managed.

In order to reduce the dependencies between Customer and Payment while enabling a
feasible asynchronous communication between these services, we redefine the Payment
service into an Order service. This service handles the payment process as well as the
shopping cart which contains the items to buy. The shopping cart was previously part
of Customer. This previous assignment of the shopping cart however led to unwanted

45

3. Analysis of a Monolithic Application

1

2

3

4

5

6

7

Figure 3.12. Monitoring the in|FOCUS behavior with ExplorViz of a customer transferring money to
the online wallet.

communication between the Gaming service when buying lottery tickets. With the new
assignment of the shopping cart component, both the Customer and Gaming service signal
the Order service asynchronously to put a requested product into the cart. This can
possibly be done through choreographed publish/subscribe events, which are discussed in
Section 3.7. This has the advantage that all products can still be viewed or requested to
buy even when the Order is not available at that time. Furthermore, no more inter-service
communication has to take place in order to complete the payment process. The other
services can then be informed via asynchronous communication to confirm the successful
execution of the payment process.

This redefinition of the Payment service showcases the benefits of a dynamic analysis.
By monitoring the runtime behavior of the software application, we gained new insights
which were previously overlooked by the static analysis. Consequently, we were able to
improve a previously made architectural design decision with the help of ExplorViz.

3.6 Database Analysis of in|FOCUS

After dividing the monolithic software architecture into distinct services, the data model
of the application has to be adapted to the modernized architecture style. Otherwise,
the flexibility and the vertical scalability of the services are limited. Furthermore, the
enforcement of a single data model can lead to a bottleneck in the development process.

46

3.6. Database Analysis of in|FOCUS

For large-scale software projects, the data model is often maintained by a separate team
of developers. Consequently, the introduction of new features to the system oftentimes
requires changes of the data model which have to be coordinated with the database
team [Bindick and Stoye 2018]. This creates unwanted overhead and hinders an agile
development process.

Therefore, the centralized data governance has to be replaced by a distributed data
model. The goal is to follow the suggestions of both the SCS and microservice architecture
style so that every service owns its own data. Usually, we distinguish between pseudo-
distributed and distributed data governance. Both approaches are depicted in Figure 3.13. The
first solution divides the centralized data model into separate data schemata within a single
database. This enables a developer team of a specific service to independently own and
change the respective schema without any additional communication to the other teams.
Additionally, the data model can be adjusted to the specific needs of the service. In contrast
to the first, the distributed data governance approach splits the data model further and
places the different schemata into separate databases. This allows the employment of a
diverse array of database types to exploit certain features of different database technologies,
dependent on the characteristics of the internal data. The distribution of data of multiple
machines also enables targeted scaling of each unit.

The approach of finding bounded contexts within the in|FOCUS of Section 3.4 is reused
for the purpose of dividing the data model of the in|FOCUS application. Therefore, we
statically analyze the data model alongside previously established service operations (see
Table 3.2) of the lottery application. With the help of the JDBC driver log4jdbc (Section 2.9)
and the database administration tool DBeaver (Section 2.8), the database tables which are

Relational DB

Relational DB

Scheme A

Scheme B

Graph DB

Relational DB

Document
-based DB

Scheme BScheme A

Centralized Data
Governance

Pseudo-Distributed
Data Governance

Distributed Data
Governance

Figure 3.13. The transition process from a centralized to a distributed data governance.

47

3. Analysis of a Monolithic Application

accessed by each service operation are identified and mapped onto the respective bounded
context. This investigation of transaction boundaries and the resulting assignment provides
us with an individual schema for each service [Newman 2015a]. Afterwards, the tables are
adjusted to their context.

Figure 3.14 exemplifies the identification of the required in|FOCUS database tables
by the Gaming service. Here, we determine the utilized database tables for the service
operation of loading and filling out a lottery ticket. The dashed lines between the tables
indicate a foreign key relation. As an example, the table USERS as well as CUSTOMERS contain
a foreign key of the CLIENTS table. Therefore, the two can be seen as a specialized subset
of CLIENTS. On the one side, USERS handles the general attributes such as system locks
and user roles. On the other side, CUSTOMERS contains specific information for in|FOCUS
lottery customers. All the shown database tables can be assigned to the Gaming service.

Figure 3.14. Identification of the required database tables by the Gaming service for loading and
filling out a lottery ticket.

48

3.6. Database Analysis of in|FOCUS

However, some tables are used by multiple service. Then, the data model of a service can
be improved by customize the those tables to specifically fit the requirements of the table
as well as conform to the ubiquitous language of its context.

One of these tables is USERS which is part of every defined SCS of the system. Though,
the definition of a user differs depending on its context. In contrast to the customer
management context of the Customer service, the Gaming service sees the user more a
player of a game rather than a customer. As a result, the Gaming service may need different
attributes of the player than the other services. Figure 3.15 illustrates the different definitions
of a user and demonstrates a distribution of attributes depending on the context.

Admittedly, a distributed data governance comes with its challenges which have to
be addressed. First, the introduction of multiple database technologies to the software
system increases the complexity and the required know-how of the developers. Further-
more, a centralized database supports ACID (Atomicity, Consistency, Isolation, Durability)
transactions. On the contrary, transactions over multiple databases and therefore over
multiple distributed services cannot guarantee ACID. Though, it is possible to support
these properties for transactions within a single service. In the following, we present design
patterns which aim to address these challenges [Gonchar 2018].

The Aggratage pattern introduces so-called aggregates to the data model. Each aggregate
summarizes business objects which are functionally related to each other. There can be
multiple aggregates per bounded context. Then, data consistency has to be ensured for
these aggregates. This pattern helps the developer to identify critical data dependencies

User

ID

BankAccount

GameHistory

Address

NewsletterSubscription

Name

Customer BC

Player

ID

GameHistory

Gaming BC

TargetPerson

ID

GameHistory

NewsletterSubscription

Marketing BC

User

ID

Name

BankAccount

Payment BC

Customer

ID

BankAccount

GameHistory

Address

Name

Monolith

Figure 3.15. Division of the monolithic data model into separate data models for each bounded
context (BC).

49

3. Analysis of a Monolithic Application

within their system. An example of an aggregate would be the bank account balance and
the amount of money that the user wants to withdraw. Naturally, the withdraw amount
should not exceed the available amount of the bank account.

Oftentimes, we need a procedure to gather data for a specific use case from a set of
services which hold the required data, especially when it comes to microservice architec-
tures. In order to keep the communication structured while ensuring loose coupling of the
services, the clients should not directly communicate with the services. Instead, an API
gateway is introduced which takes client requests and gathers the data from the involved
units. More information on API Gateways can be found in Section 3.7.

Lastly, the Saga pattern presents a possibility to assure data consistency within dis-
tributed systems. This pattern, which is already applied in SOA architectures, can also
be ported to SCS or microservice architectures. Generally speaking, an atomic business
operation which involves multiple services is possibly comprised of multiple transactions.
A saga is defined as a sequence of local transactions. Each of these local transactions
updates the database and then publishes an event to trigger the next local transaction in
the saga. In case a local transaction fails due to rule violations, the saga executes a series of
compensating transactions that roll back the changes which were done by the preceding
local transaction. The event management can be realized as either through orchestration or
through choreography which are presented in the following Section 3.7.

3.7 Composition of the Services

In order to fully benefit from the decomposition of the monolithic software system
in|FOCUS into multiple SCSs and/or microservices, these services have to collaborate
with each other in an appropriate manner. Therefore, several integration patterns have
been developed to meet different requirements of the software engineer. Even though the
application consists of several distributed services, the user experience should not differ
from a monolithic system. Therefore, the cooperation of the services should be seamlessly
[Newman 2015a].

UI Fragment Composition

A commonly used pattern when it comes to the integration of SCSs is the UI Fragment
Composition [Newman 2015a]. The UI of the application is composed of several fragments,
each fragment being an individually provided UI component by an SCS. Figure 3.16 on
page 52 illustrates this composition of the defined SCSs of Section 3.4 as an example. Then,
these components can be represented as widgets in the web frontend. A more coarse-
grained approach is the composition of a set of web pages which are provided by the SCSs.
These are then connected via hyperlinks. Alternatively, the client can load different parts
of the web page when requested with the help of JavaScript and AJAX (Asynchronous
JavaScript and XML). This can be especially helpful when generating a page which is a

50

3.7. Composition of the Services

less prominent part of the frontend (e.g. shopping cart page for an online shop) with the
help of different services [Steinacker 2015]. To ensure a uniform feel and look of each UI
component for the user, an asset server can be used to manage static assets such as Cascading
Style Sheets (CSS), HTML components or pictures for every UI fragment [Steinacker 2015].
A major advantage of this approach is the independence of the different developer teams.
Hence, the team which develops a certain service can also change its UI independently.
This separation of concerns is reinforced not only within the software system, but also in
the development structure and therefore supports agile software development principles.

API Gateway

API gateways serve as an interface for the communication between the frontend and backend
services [Newman 2015a]. This technical solution does not only promote the independence
and the loose coupling of the services, but also enables the provision of varying content
depending on different types of devices (e.g. mobile app, web app). Figure 3.17 depicts
this concept which is often employed in microservice architectures. Here, an API gateway
coordinates the communication between both a mobile and a web app and the determined
SCSs of the in|FOCUS application. In general, the API gateway encapsulates the clients
from the microservices and therefore supports the isolation concept of the architecture style.
Furthermore, the API gateway can implement additional features such as load balancing,
routing, and client authentication [Richardson 2018]. However, the centralized handling of
the different UIs can negatively impact the ability to release the interfaces independently.
It may not be possible anymore to change the UI of the mobile app without affecting the
UI of the web app. A feasible solution to this problem is to split the API gateway into
dedicated backends for each frontend, called backends for frontends [Newman 2015a].

Anti Corruption Layer

When it comes to industry software modernization projects, only certain parts of a software
application might get targeted for rework due to a lack of resources. Consequently, the
modernized system has to integrate parts of the legacy application which can pose great
risks if not done correctly. In order to avoid an unwanted adoption of the legacy data
model and enable the newly chosen concepts and design choices to be independent to the
legacy system, an anti-corruption layer is introduced between the two. Figure 3.18 shows
an application with two subsystems, a modernized and a legacy subsystem. This isolating
layer functions as a translator for both subsystems and tailors the sent requests to fit the
internal data model of the recipient. Usually, the anti-corruption layer is implemented as
a standalone component which owns all the necessary logic for its task. Naturally, the
introduction of a new layer always increases the complexity of the system. Furthermore,
the design of the anti-corruption layer should support easy scaling. It is the crux of
the communication between subsystems and therefore a bottleneck of the application
architecture [Brown 2014].

51

3. Analysis of a Monolithic Application

UI Fragment

UI Fragment

UI Fragment

UI Fragment

Customer

Marketing

Payment

Gaming

Figure 3.16. UI components of each SCS are composed into a single UI of the application.

API Gateway

Web app

Mobile app

Customer Marketing PaymentGaming

Figure 3.17. The API gateway handles calls to and from different frontends.

52

3.7. Composition of the Services

SCS A SCS CSCS B
Legacy Subystem

A
nt

i-c
or

ru
pt

io
n

La
ye

rModernized Subsystem

Figure 3.18. The anti-corruption layer manages the communication between the modernized subsys-
tem and the legacy subsystem.

Orchestration

The organization of communication between the services can be realized in different ways.
One of the often used service-oriented architecture (SOA) paradigms is the orchestration
of services. Here, one of the services, called the composer, presents a focal point of the
business logic. Through synchronous or asynchronous calls, the service composer directs
the involved services through the invoked use case and tracks its progress. Therefore, it
functions as a conductor to an orchestra of services, hence the name. Figure 3.19 shows
a possible orchestration of the use case “Create customer account” of a lottery application.
Here, the customer service acts as the composer and asynchronously directs three involved
microservices to complete the customer creation process. However, it becomes apparent that
this organization concept creates coupling between the composer and the other services.
Additionally, the introduction of a central directing authority goes against the general
principles of the SCS and microservice architecture concepts [Newman 2015a].

Choreography

The choreography approach also originates from SOAs and represents an alternative to
the preceding orchestration concept. The directing unit is replaced by a service composer
which publishes events to which services can subscribe to and react accordingly. Compared
to the service orchestration, the choreography provides a higher degree of decoupling
between these services. As a downside, additional effort needs to be made for monitoring
and progress tracking. Figure 3.20 depicts the publishing and subscription process of the
previously presented use case “Create customer account”.

53

3. Analysis of a Monolithic Application

Customer
Service

(Service Composer)

Online Wallet
Service

Email Service

Customer Card
Service

Create personal online wallet

Send welcome email

Promote customer card offers

Figure 3.19. Orchestration of the customer account creation.

Online Wallet
Service

Email Service

Customer Card
Service

Subscribes

Subscribes

SubscribesCustomer
Service

(Service Composer)

Customer
Creation Event

Publishes

Figure 3.20. Choreography of the customer account creation.

54

Chapter 4

Evaluation

In order to assess the impact of the live trace visualization tool ExplorViz on the task of
microservice discovery, a qualitative evaluation is conducted. To that end, four software
developers who were involved in the development process of the software application
in|FOCUS were asked to use ExplorViz for microservice discovery in in|FOCUS. After-
wards, a guided interview was conducted in order to capture the user experience. In this
chapter, the answers giving during these interviews are qualitatively evaluated.

The broad goal of this endeavor is the gathering of new insights about the supporting
features of ExplorViz which enable the division of large-scale software applications into
microservices. The chapter is structured as follows: Details about the evaluation goals,
the research questions, and the hypotheses of the evaluations are given in Section 4.1.
Section 4.2 presents the preparation process of the interviews which is followed by the
execution details described in Section 4.3. Thereafter, Section 4.4 presents and the discusses
the results of the interviews. This chapter concludes with the discussion of possible theats
to the validity of the evaluation results in Section 4.5.

4.1 Goals

The goal of this evaluation is the assessment of the capabilities for analyzing a large-scale
software application and discovering a microservice architecture with the help of ExplorViz.
We try to identify features of ExplorViz which support the developer during this discovery
phase and which add value to the architecture analysis. Additionally, features are identified
which in the current implementation of ExplorViz are considered to obscure the discovery
functionality. Moreover, suggestions for future improvements, in particular requests of
missing features, are collected and discussed below.

Typically, software modernization is a long-term commitment due to the complexity
inherent in the associated processes. Therefore, an analysis software such as ExplorViz
should not only be efficiently usable by software architects who have many years of
experience with the target architecture. It should also support the training and incorporation
of new developers to the architecture. Hence, the assessment of these capabilities of
ExplorViz are also part of the interviews. Depending on the used modernization workflow,
further development of the functionality of the application does not only happen after
finalizing the software modernization, but also in parallel to the modernization process.

55

4. Evaluation

Consequently, an assessment of the support for the daily development work provided by
ExplorViz is presented at the end of this chapter.

4.1.1 Research Questions

The following research questions are derived from the goals presented above:

RQ1 Does the software architecture visualization of ExplorViz have a positive impact
on the software modernization process of a large-scale software architecture? In
particular, does it do so by supporting the discovery and verification of bounded
contexts in order to divide the existing software architecture into microservices?

RQ2 Does ExplorViz support the software architect’s training and discovery of unfamiliar
parts of the architecture?

RQ3 Does ExplorViz support the analysis of a large-scale software architecture in the
daily developing work of software architects?

RQ4 How can ExplorViz be improved to increase the support of the software moderniza-
tion process?

4.1.2 Hypotheses

The following proposed hypotheses will be discussed and either verified or disproved by
the results of the interviews.

H1 ExplorViz makes it easier for developers with prior in-depth knowledge of the ana-
lyzed architecture to find and verify bounded contexts inside the existing software
architecture.

H2 ExplorViz supports the introduction of previously unfamiliar parts of the system
architecture to a software architect.

H3 ExplorViz enables its user to verify the existing architecture and therefore have a
positive impact on the daily developing work.

4.2 Method

4.2.1 General Interview Guide Approach

For the evaluation of this thesis, the semi-structured General Interview Guide Approach [Gall
et al. 2003] is chosen. Every participant of this interview is presented with the same task.
Prepared open-ended questions aim to guide all participants towards the same general
direction. However, the investigator still remains flexible in order to adjust to the course of

56

4.3. Interview

the interview which is based on the participant’s assumptions and conclusions from the
given task. This approach also provides the interviewees with the freedom to encourage
creativity and express their own subjective opinions on the given matter. This flexibility is
mandatory for the evaluation of a highly explorative task such as discovering microservices
within a large-scale software architecture with the help of ExplorViz. There are countless
possibilities of dividing an architecture without there being a right or wrong answer most
of the time. It can expected that answers may vastly differ from one participant to the
other because each of them might bring in a different level of experience and knowledge
about the software architecture as well as the discovery and development of microservices.
The given answers of the participants are recorded throughout the interview and later
summarized in writing by the investigator.

4.2.2 Recruitment of Participants

Since the architectural analysis of in|FOCUS may provide a deep insight into possible
sensible information and company secrets, it is necessary to limit the pool of possible
participants to employees of adesso only. Furthermore, an advanced understanding of
software architecture development is a prerequisite for all participants. The discovery of
microservices is a convoluted task which requires a good overview over possible problems
and opportunities of different architecture styles and patterns. Additionally, all participants
should be familiar with the architecture of the in|FOCUS application. Without in-depth
knowledge about the inner structure and behavior of the software system, it is unlikely to
develop a substantially justified solution for the task at hand.

With the help of the current project owners of in|FOCUS of adesso Hamburg and
adesso Dortmund, software developers, who are actively working on the development
in|FOCUS, were selected and recruited via email. Due to the low number of participants,
it was not deemed necessary for a prior classification of the participants.

4.3 Interview

4.3.1 Setup

The interviews were carried out within a single day at the adesso office in Dortmund.
A separate room was reserved for the interviews to ensure an undisturbed working
environment. Each interview was planned to take approximately 30 minutes in total. In
order to maintain good performance of both ExplorViz and in|FOCUS, two notebooks
were prepared. Notebook 1 ran an in-development snapshot of ExplorViz. This version was
provided as docker images1. Additionally, this notebook also ran a kieker-instrumented
dummy application, called kiekerSampleApplication for introductory purposes of ExplorViz.

1https://github.com/ExplorViz/docker-configuration, accessed 24.06.2019

57

https://github.com/ExplorViz/docker-configuration

4. Evaluation

This Java application simply generates a constant stream of monitoring data by continuously
calculating Fibonacci numbers and executing SQL queries2.

Notebook 2 ran a released version of in|FOCUS which was instrumented by Kieker.
Here, the number of probed packages had to be limited to a subset due to technical
limitations of the used version of ExplorViz, as it was case for the architectural analysis
of Section 3.5. This software application was deployed on a JBoss EAP 6.3 application
server, provided by adesso. It was customly reconfigured to allow the instrumentation
of Kieker. For further detailed information, see Section 3.5.1. Table 4.1 summarizes the
relevant hardware configurations of both notebooks.

Table 4.1. Used notebook configurations for the evaluation

Notebook 1 (ExplorViz) Notebook 2 (in|FOCUS)
OS Windows 10 Pro 64-bit Windows 10 Pro 64-bit

CPU Intel Core i7-8650U, 1.9GHz Intel Core i5-4310U, 2.0GHz
RAM 32 GB 8 GB

Display 15 inch, 1920x1080 14 inch, 1920x1080
Peripherals USB Mouse USB Mouse

As the more powerful notebook, Notebook 1 was chosen for the execution of ExplorViz
since the analysis and visualization of a large-scale software system such as in|FOCUS is
very computationally intensive. The Kieker records of in|FOCUS, which were gathered
on Notebook 2, were sent to Notebook 1 for further analysis of ExplorViz. At the time of
this evaluation, no external displays were available at the adesso offices which could have
been used for this study. It is noted that visually complex tasks, such as the microservice
discovery and analysis with ExplorViz, may benefit from an increased display size.

4.3.2 Scenario

Each participant starts the interview with the same scenario in order to ensure equal
preoperative conditions. On Notebook 1, the ExplorViz website is opened in the chosen
browser. It shows the 3D visualization of the kiekerSampleApplication which is used for
introducing the main features of ExplorViz. Afterwards, the kiekerSampleApplication is
exited and the 2D landscape visualization of the in|FOCUS software application is opened
on the ExplorViz website. No parts of the in|FOCUS architecture have yet been visualized
as a 3D model, except the ones which are active during its startup process.

On the second notebook, the welcome page of the locally hosted in|FOCUS website is
opened in the chosen web browser. Furthermore, the participant is provided with the login
information of a dummy account for the in|FOCUS home page.

2https://github.com/czirkelbach/kiekerSampleApplication, accessed 24.06.2019

58

https://github.com/czirkelbach/kiekerSampleApplication

4.3. Interview

4.3.3 Execution

This subsection discusses the different steps throughout the course of the interview. Fur-
thermore, the investigative questions are presented and discussed. They aim at guiding the
participant through the semi-structured interview process towards the desired evaluation
goals.

Initial Part

After obtaining the participant’s approval for recording the interview, it begins by gath-
ering relevant personal information. The interviewee is asked about the number of years
of professional experience as a software developer, about their prior knowledge of the
architecture of the software application in|FOCUS as well as any prior experience with
ExplorViz. The answers to these initial questions enable a possible classification of the
participants when discussing the results of the interview. They provide great insight into
possible factors which are relevant to the discovery of microservices inside a large-scale soft-
ware architecture with the help of ExplorViz. Thereafter, it is ensured that the participant
does not suffer from any visual impairments such as color blindness which could affect the
intended usage of ExplorViz since information is presented to the user via utilizing certain
color codings in the visualization, see for example Figure 2.6.

This introduction is concluded with an overview of the upcoming steps of the interview.
It is established that during the interview process, the people involved will both analyze
the architecture of the software application in|FOCUS with the help of the live trace
visualization tool ExplorViz and discover microservice boundaries in the given architecture.

Introduction to the Topic

Before commencing the main part of the interview, each participant will receive a techni-
cal introduction to ExplorViz and familiarize themselves with the basic functionality of
ExplorViz. The web interface as well as all required features of ExplorViz for the given
task will be presented with the help of the kiekerSampleApplication. This Java application
generates monitoring data for the ExplorViz demo analysis. The introduction focuses on
the 3D application visualization of ExplorViz, since the to be analyzed monolithic software
application runs on a single system node and is not distributed onto multiple systems.
Hence, the 2D landscape visualization shows only one node with no communication to
others and is therefore not used for the architecture analysis.

The participants are introduced to the visual presentation of packages, classes, and
their communication. The interaction with the architecture model by moving the model,
opening and closing packages, and receiving additional information by mousing over
different elements of the model is demonstrated. Moreover, the usage of the timeline and
the trace replayer are presented. Finally, a common definition of microservices, as stated in
Section 2.2, and their discovery approach with the help of bounded contexts, see Section 3.2,
is established in order to avoid later misunderstandings.

59

4. Evaluation

Investigative Questions

The following part presents the investigative questions of the interview and discusses
the reasoning behind each of them. Generally speaking, the seven questions Q1–Q7 are
associated to the four topics, namely Area of Expertise, Architecture Discovery, Architecture
Modernization and Feedback, as described below.

1. Area of Expertise

This topic establishes the participant’s exact area of expertise in the development process
and inside the software architecture of in|FOCUS. This initial question is essential for
the successful execution of the interview. For the ongoing microservice discovery, it
is desirable that the participant focuses on areas of the architecture that he or she is
most knowledgeable of. Thus, a more informed decision can be expected when choosing
boundaries of bounded contexts.

Q1 What is your part in the development process of in|FOCUS? Which parts of this software
system did you develop?

2. Architecture Discovery

The second topic verifies two things, namely the participant’s ability to use ExplorViz
and the understanding of the presented information of the visualized 3D model. This
gives the investigator the opportunity to clarify and solve possible misunderstandings
before the main part of the architecture analysis commences. Furthermore, it shows
another use case of ExplorViz to the participant, that is to say, the possibility for verifying
the existing architecture. This verification could provide the following insights to the
developer. Either there are problems in the current implementations, since parts of
the application do not behave as expected, or the developer has a faulty or outdated
knowledge of this part of the application. In both cases, this awareness is crucial for a
successful software modernization process.

Q2 Execute a service operation on the locally hosted version of the in|FOCUS website, preferably
one that you implemented. Can you identify the behavior of a service operation with
ExplorViz? Is the behavior of this service operation as expected? If not, what is the difference?

3. Architecture Modernization Process

This topic represents the main part of the analysis. Its goal is to provide new insights
into the ability of ExplorViz to support the discovery process of microservices inside
a large-scale monolithic software architecture. This part comprises two steps. Firstly,
the discovery of a possible microservice by drawing boundaries inside the existing
monolithic software architecture, and secondly, the evaluation of these boundaries with
the help of the dynamic analysis of ExplorViz. During this process, the participant can
maneuver freely through the in|FOCUS website and its architecture. This procedure
emphasizes an explorative way of discovering microservices and gives the interviewee

60

4.4. Results

as much freedom as possible. Only when asked for, the investigator will give guidance
to the participant.

Q3 Your goal is to identify bounded contexts inside the in|FOCUS architecture. With your prior
knowledge of the architecture, do you already have an idea where one of these boundaries
could be in order to form a candidate for a microservice? If not, can you identify such a
boundary with the help of ExplorViz?

Q4 Microservices should be loosely coupled and highly cohesive. With the help of ExplorViz, try
to analyze service operations of your choice within your chosen boundary. Is it as loosely
coupled and as cohesive as expected? What do you think about the quality of your defined
boundary? Can you change it in order to improve its qualities for defining a microservice,
such as loose coupling and high cohesion?

4. Feedback

These closing questions of the interview aim at gathering feedback from the participants
after they gained first experience with the modernization process with the help of
ExplorViz. The provided answers aim at giving an indication whether ExplorViz seems
to be useful for the modernization of a monolithic software application towards a
microservice architecture. In particular, possible extensions and missing features, which
are deemed to improve the usability of ExplorViz for this use case, are discussed. After
modernizing a software application into microservices, this reorganized software system
still needs to be maintained and monitored. Therefore, it is also of value to address the
continuous integration of ExplorViz into the daily work routine of a software developer.

Q5 In which way do you think does ExplorViz support the discovery of bounded context
boundaries inside the architecture of an application?

Q6 Could you think of a missing feature that would improve the usability for the architecture
and microservice discovery?

Q7 In which way do you think could ExplorViz support you in your daily work as a software
developer?

4.4 Results

This section presents and discusses the findings and results of the interview process
described in Section 4.3. First, Section 4.4.1 introduces the four participants (I1)–(I4).
Thereafter, Section 4.4.2 presents the answers provided by the interviewees and last, ??
discusses these answers and the findings of this evaluation process.

4.4.1 Participants

Table 4.2 gives an overview over the participants’ years of professional experiences as a
software developer and with the software application in|FOCUS. Generally speaking, the

61

4. Evaluation

Table 4.2. Overview of the interviewees’ experiences

Experience software developer Experience in|FOCUS
Participant 1 (I1) 9 years 3 years
Participant 2 (I2) 12 years 2 years
Participant 3 (I3) 10 years 3 years
Participant 4 (I4) 7 years 2,5 years

participants are experienced software developers with several years of experience with the
in|FOCUS architecture. It remains to be determined whether the notable difference in years
working as a software developer between participant (I2) and participant (I4) is of any
significance. Also, the one-year experience difference of participant (I2) and participant (I3)
should be kept in mind. Furthermore, none of the interviewees had prior experience with
ExplorViz. Additionally, it is noted that neither of them suffer from visual impairments
such as colorblindness that could impair the work with ExplorViz.

4.4.2 Answers

Next, the participants’ answers to the previously formulated questions are presented.

Q1 What is your part in the development process of in|FOCUS? Which parts of this software
system did you develop?

I1: The first participant described himself as a full-stack developer, having worked
on both frontend and backend development of in|FOCUS. In the backend, the
interviewee worked with most of the modules of the application and has great
in-depth knowledge of the whole architecture. Besides the development of the
functionality of in|FOCUS, the participant also worked as a software architect for
past architecture development projects in the in|FOCUS context.

I2: The second interviewee works on the backend development of in|FOCUS. His
daily work includes implementing change requests, doing error search and cor-
rection as well as redeveloping already existing functionalities. The participant
mentions the customer payoff module as being part of his personal ongoing
development work. This module transfers winnings to the customer online wallet
rather than to the customer bank account.

I3: The responsibilities of the third participant include requirements engineering, com-
munication with clients, and the definition of development goals and processes.
Therefore, after being actively involved in the development of the management of
customer cards inside the in|FOCUS software application, the interviewee is not
implementing code for the analyzed application. Hence, the third participant’s
knowledge of the architecture can be considered as more general and less specific.

62

4.4. Results

I4: The last interviewee develops the backend of in|FOCUS, implements change
requests as well as error search and correction. Furthermore, other daily tasks
include the specification of requirements and module testing. The participant
exemplarily developed parts of the lottery ticket submission and the lottery
gaming process.

Q2 Execute a service operation on the locally hosted version of the in|FOCUS website, preferably
one that you implemented. Can you identify the behavior of a service operation with ExplorViz?
Is the behavior of this service operation as expected? If not, what is the difference?

I1 The participant logged in on the in|FOCUS website with the previously provided
login information of a dummy customer. Afterwards, the lottery system ticket
was loaded as a second use case. The invoked behavior and the activated parts
of the architecture of both use cases were successfully identified with the help
ExplorViz. The interviewee confirmed that the general behavior was as expected
and the correct modules were active during the use cases. However, the participant
realized that the number of requests and active instances of the involved modules
were higher than they should be. Therefore, it was concluded that this possibly
needs further investigation and a possible patching.

I2 In the second interview, the customer login was executed with the given lo-
gin information. Its behavior was identified with ExplorViz and the participant
confirmed that it was depicted as expected.

I3 The participant logged in as a customer on the in|FOCUS website and opened the
overview of the available customer cards of this customer. First the login process
was analyzed with ExplorViz. While having no in-depth knowledge but only a
higher-level expertise of the login functionality, the participant was surprised how
many components were involved in this process. The trace replayer of ExplorViz
was then used in order to discover the login process in detail. The interviewee
concluded that it was very hard to understand the exact behavior with the help
of ExplorViz without having prior in-depth knowledge of the actual behavior.
While receiving information on the called packages and classes, the interviewee
missed the possibility for gathering detailed information about the content of
the communication, exemplarily the name of the sent object between two classes.
After having monitored the second executed use case, as to say the presentation
of all available customer cards of this customer, the participant stated that its
behavior was as expected.

I4 As the previous participants, the final interviewee executed the customer login.
Thereafter, a lottery game was chosen, its lottery ticket was filled out and submit-
ted afterwards. While analyzing the behavior of the lottery ticket submission with
ExplorViz, the participant quickly realized that the use case of submitting a filled
out lottery ticket is too complex to be analyzed in the given time of the interview.

63

4. Evaluation

A considerable amount of packages from most parts of the architecture is needed
to successfully fulfill this use case. Furthermore, the communication between
them is convoluted which significantly complicated its analysis. Consequently, the
participant chose the customer login process for further analysis whose behavior
was as expected.

Q3 Your goal is to identify bounded contexts inside the in|FOCUS architecture. With your prior
knowledge of the architecture, do you already have an idea where one of these boundaries could
be in order to form a candidate for a microservice? If not, can you identify such a boundary
with the help of ExplorViz?

I1 The participant presented several suggestions: The encapsulation of all the loading
of all necessary parameters of the lottery tickets, such as the date of the next
lottery drawing, the costs of a specific lottery ticket. Another mentioned possibility
was the encapsulation of the user management or the ticket submission. The last
suggestion was the extraction of the subledger of the lottery application.

I2 Initially, the participant could not suggest a boundary for a bounded context.
The interviewee mentioned the high entanglement of the monolithic in|FOCUS
application as the reason. Therefore, the participant executed several use cases of
the customer management functionalities of the website to discover a bounded
context. These executed use cases included several ones such as changing the
customer address and the customer banking information. Finally, the customer
management was suggested as a possible candidate for a microservice. However,
is was also mentioned that the size of this service would possibly exceed the
dimensions of common microservices.

I3 The customer card management was the participant’s initial suggestion for a
microservice candidate. As an alternative, the lottery ticket management was
mentioned.

I4 The interviewee suggested two possible candidates for a bounded context. First,
the user management and secondly the game processing. The user management
service should not only contain the management functionality for the customer
but also for other users, such as system administrators. The possibility for a further
division of this service into distinct management services for each type of user and
each type of distribution channel was mentioned. Exemplarily, different services
for internet customer management, for customer card customer management,
and for administrator management could be taken into consideration. To further
break down a user management service, one could divide it into multiple small
microservices such as a login service and a service for managing the rights of
user accounts. Additionally, the participant suggested a lottery ticket microservice.
This service would provide a specific lottery ticket for each different lottery
game which is available on the in|FOCUS website. Furthermore, the task of the
microservice should include the buying and the submission of the lottery ticket.

64

4.4. Results

Q4 Microservices should be loosely coupled and highly cohesive. With the help of ExplorViz, try to
analyze service operations of your choice within your chosen boundary. Is it as loosely coupled
and as cohesive as expected? What do you think about the quality of your defined boundary?
Can you adjust its boundaries in order to improve its qualities for defining a microservice, such
as loose coupling and high cohesion?

I1 The participant first focused on the idea of a ticket parameter microservice. When
loading a specific lottery ticket in the ticket office on the in|FOCUS website, every
parameter such as the price of the ticket is initialized. Hence, the participant
opened lottery tickets of different lotteries in sequence and monitored the invoked
behavior in ExplorViz. The dynamic analysis confirms this thought that the pack-
ages which are responsible for loading the lottery tickets are already very loosely
coupled with the rest of the application. Therefore, these results encouraged the
interviewee to related back to his previous choice, which seemed to be a fitting
candidate for a bounded context. However, the interviewee realized a possible
problem with this bounded context as it was defined when it came to instant
lottery games such as lottery scratch tickets. These games are handled differently
in the current in|FOCUS architecture and require different modules than other
lottery games. This could pose a problem for the clear definition of the single
purpose of this microservice. Therefore, the participant suggested that it might
be better to split the lottery games and instant lottery games into two different
microservices. This however would require further analysis.

I2 The participant realized that the previously defined customer management ser-
vice would be very extensive in its size and it would therefore qualify more as a
self-contained system rather than as a possible microservice. With the support of
ExplorViz, the participant analyzed possible use cases which would fit to the cus-
tomer management service. Following discovery was made: The packages of the
payment process of in|FOCUS are not only used when paying for a lottery ticket.
However, multiple other use cases require the same parts of the payment process
and are therefore and tightly coupled to it. Among others are the management
of the customer online wallet, the management of customer winnings, and the
transfer of money to the customer online wallet. Initially, all of the mentioned use
cases were supposed to be part of the proposed customer management service.
Since, while being tightly coupled to the customer management, the payment
process should not be part of the customer management service. The intervie-
wee’s idea was to extract the dependent use cases from the customer management
service and define them as their own microservices. However, the participant is
certain that this would present new challenges. Therefore, further analysis would
be necessary.

65

4. Evaluation

I3 The interviewee continued the analysis of the bounded context of the lottery ticket
management by using the trace replayer function of ExplorViz. The participant
discovered that the packages, which are responsible for gathering the necessary
attributes for a lottery ticket inside the chosen ticket attribute service boundary,
are also used in the ticket submission process. This posed a problem for the clear
definition and the loose coupling of the developed microservice. The interviewee
stated that the ticket submission process should not be part of the ticket manage-
ment service. As a consequence, the ticket submission should either be its own or
part of another microservice. Consequently, this creates unwanted dependencies
between the ticket management service and the ticket submission process. Due to
these issues, it is concluded that the chosen boundaries of the bounded contexts
are insufficient and that there is no obvious fix for this problem. It will require
further detailed analysis.

I4 The participant analyzed the previously defined bounded context of the lottery
ticket microservice. It is realized that this lottery ticket microservice would include
gateway service adapter in order to be able to independently fulfill its designated
task. These gateway service adapters provide an interface for the connection
and transfer of information to external software systems of the different online
lottery gaming services, such as Eurojackpot and Toto. However, these gateway
service adapters are also used by other tasks outside of the lottery ticket service.
This would create unwanted dependencies between this microservice and other
services. One idea was to define the gateway service adapters as a separate
microservice. However, the interviewee was of the opinion that further analysis
has to take place in order to make a qualified statement about this idea.

Q5 In which way do you think does ExplorViz support the discovery of bounded context boundaries
inside the architecture of an application?

I1 The participant thought that ExplorViz provides a lot of useful information for the
software architect. Even with very complex and highly tangled software systems,
it is possible to extract critical information from the architecture visualization of
ExplorViz, provided that the user has in-depth knowledge of this software system.
The participant mentioned that the developer especially benefits from ExplorViz
in regard to the verification of suggestions for bounded contexts.

I2 The interviewee saw potential in ExplorViz when it comes to supporting the soft-
ware modernization process of large-scale software applications. The participant
mentioned that the visualization of a large and complex software architecture
such as the one of in|FOCUS can be overwhelming. Therefore, the user would
need a significant amount of in-depth knowledge of the existing architecture for
the efficient and goal-oriented use of ExplorViz.

66

4.4. Results

I3 In the opinion of the third participant, ExplorViz supports the discovery of
bounded contexts. However, analyzing complex use cases of highly entangled
software systems could pose significant challenges. In this case, it is possible that
ExplorViz lacks a way to filter the massive amount of presented information in a
target-oriented manner. The interviewee mentioned the ticket submission process
of in|FOCUS as an example of such a use case.

I4 The participant concluded that ExplorViz supports the discovery of microservices
inside a large-scale software architecture. Especially the ability of ExplorViz to
easily identify bottlenecks of a use case, can provide helpful clues for the software
developer on where to find possible boundaries of a microservice.

Q6 Could you think of a missing feature that would improve the usability of the architecture and
microservice discovery?

I1 The participant suggested a playback function for the history monitoring data
which automatically executes a previously defined sequence of history monitoring
data. This could improve the usability of the timeline function of ExplorViz by
alleviating the user from clicking through the timeline him- or herself. Addition-
ally, it was suggested that an introduction of a heat map, which shows most
active parts of the architecture during this defined sequence, could be of great
help for analysis tasks. It could greatly support the identification of possible
bottleneck use cases in complex software systems. Furthermore, a heat map for
the 2D landscape model could possibly highlight high-stressed services which are
in need for vertical scaling.

I2 The participant could not think of a missing feature that would improve the
usability of ExplorViz for the software modernization process.

I3 In order to possibly improve the architecture discovery capabilities of ExplorViz,
the interviewee suggested a possibility for gaining more information about the
communication between classes. By presenting details about sent objects, such as
the object name, it might improve the support of ExplorViz for introducing and
understanding yet unknown parts of the architecture. However, the participant
admitted that it might be difficult to visualize all the information in an organized
and clear manner when the amount of sent objects increases beyond a certain
threshold.

I4 The interviewee wished for an option of the trace replayer to only show traces
for marked communication lines. This would enable the developer to identify
detailed information of a specific part of the communication within the software
architecture by analyzing specific traces of the selected communication.

67

4. Evaluation

Q7 In which way do you think could ExplorViz support you in your daily work as a software
developer?

I1 The participant stated that ExplorViz is more suited for architecture development
and verification rather than for developing new functionalities of a software appli-
cation. It should be faster to gather the needed information, which is necessary
for further development, from the code rather than from ExplorViz.

I2 Similar to the first participant, the second interviewee was of the opinion that
ExplorViz is probably not suited for the active development of new features inside
a software application. Gathering necessary information inside the source code is
much quicker. However, it was admitted that this could change if the developer is
more familiar with and has more experience in using ExplorViz.

I3 The interviewee thought that ExplorViz has the potential to immensely support
management tasks of the software development process as well as requirements
engineering since it excels in giving a big picture overview of the architecture and
its behavior.

I4 The final participant mentioned that ExplorViz could especially support the
specification phase of a reworked functionality. Furthermore, the existing potential
of ExplorViz of supporting the testing and debugging is stated. As a final benefit,
the interviewee saw the opportunity of using ExplorViz for introduction and
training purposes for newly employed software developers.

4.4.3 Discussion of the Evaluation Results

The results of the first question Q1 show that every participant has in-depth knowledge
about the in|FOCUS software architecture. They either have in the past or currently
do actively implement parts of the functionality. Furthermore, it is to mention that the
participant of the third interview I3 is part of the development process as a software
engineer. While possibly not having the same level of implementation details about certain
modules as the others, this participant presents an opportunity for the evaluation process.
This interviewee can provide a unique standpoint of view compared to the others. While
still having enough experience with the target architecture in order to conduct its analysis,
this participant provided an assessment of the usability of ExplorViz for the architecture
planning process as a software engineer.

Next, three out of the four results of the interviews demonstrated different aspects
of ExplorViz and the software architecture analysis. I1 confirms that ExplorViz is able
to identify unwanted behavior inside the software. While being the developer with the
most experience with in|FOCUS, the first interviewee found information about possible
yet unaware implementation errors. This partly confirms the hypothesis H3 that ExplorViz
can be successfully used for verifying developed functionalities of the analyzed application.
I3 shows another application of ExplorViz, the architecture discovery. This interviewee

68

4.4. Results

utilized the visualization tool to gather missing in-depth information about certain parts
of the architecture. Hence, this provides a case where the second established hypothesis
H2 is shown to be true. Last, I4 reveals a problem which was also encountered during the
architecture analysis part of this thesis. Even with the necessary knowledge and experience,
the behavior of more complex use cases can be difficult to analyze inside a convoluted
monolithic software architecture.

The results of the third and fourth question give several crucial insights into the ability
of ExplorViz of supporting the discovery of microservice boundaries inside a large-scale
architecture. While the participants of I1, I3, and I4 were able to come up with a possible
boundary for bounded contexts, I2 had to discover such a boundary with the help of
ExplorViz. This confirms that ExplorViz provides not only possibilities for the discovery
of unknown parts of the architecture, as stated previously, but also supports the software
modernization process in discovering bounded contexts. After the definition of boundaries,
the participants had to verify their quality of being possible microservice candidates.
This validation process is an important part of every development process. Here, every
interviewee came to the conclusion that their first definition of boundary led to overlooked
problems. They were able to come up with suggestions for improvement, however, every
participant stated that these improvements possibly lead to other problems. In conclusion,
it can be assumed that the definition of boundaries for microservices is highly complex
and that even a plausible suggestion can imply numerous challenges that require further
assessment.

When it comes to the ability to support the discovery and the verification of microservice
boundaries, the participants agreed on the positive impact of ExplorViz in Q5. As previously
expected, the prerequisite for that seems to be the in-depth knowledge of the software
architecture. Generally speaking, the conducted interviews strengthen hypothesis H1 that
ExplorViz does seem to provide a positive impact on the discovery and verification of
microservice boundaries.

The interviewees came up with compelling ideas for possible missing features of
ExplorViz in Q6. As these features could be object for future work on the development of
ExplorViz, Chapter 6 goes into further details in this matter.

For Q7, every participant saw ExplorViz not as a suitable software tool for supporting
the daily implementation work of a software developer. However, it is explicitly stated that
this might change when the user has more experience with this trace visualization tool.
However, ExplorViz seems to prove itself very useful when it comes to software engineering
tasks such as requirement engineering or for training purposes and the introduction to
previously unknown or partly unknown architectures. Therefore, further investigations
have to take place as future work in order to fully verify hypothesis H3. Exemplarily, future
interviews with software developers with prior in-depth experience with ExplorViz could
be conducted to provide further inside into this matter. Chapter 6 discusses this possibility
in more detail.

69

4. Evaluation

4.5 Threats to Validity

The quality of the evaluation results could be compromised due to the following reasons.
The prior experience with ExplorViz could greatly influence the quality of the results of
the architecture analysis of the participants. It is possible that the lack of experience in
combination with the time limit of 30 minutes of the conducted interviews made it not
possible for the participants to be able the fully make use of the supporting features of
ExplorViz. Furthermore, the experience with the software architecture of in|FOCUS as well
as the software architecture development experience of the participants are two factors that
could prove the results to be not valid. Discovering bounded contexts inside an existing
architecture does not only require detailed insight into the application’s domain but also
in-depth knowledge of the majority of the application’s architecture. Additionally, the
limited number of four participants may not provide enough insight for drawing reasonable
conclusions about the analyzed ability of ExplorViz. Due to technical limitations of the
in-development version of ExplorViz which was used for these interviews, the number
of probed packages had to be restricted and it was not possible to monitor the whole
application at once. As it was the case for the main architecture analysis conducted in this
thesis, high-impacting packages for the main service operations of the software system
were identified which the help of static analysis. This subset of packages was then selected
for probing prior to the interviews. Therefore, it is possible that some key packages were
missing when dynamically analyzing the architecture. This could have either confused the
participants or it could have made the discovery of certain microservices not possible.

70

Chapter 5

Related Work

5.1 Software Modernization Projects

5.1.1 Otto.de

Otto started to move away from a monolithic software architecture towards microservices
[Hasselbring and Steinacker 2017]. The reasoning behind the company’s decision was
mainly non-functional. A modernized architecture would not only provide a more goal-
oriented scalable software system as well as a more scalable development process, but also
higher performing subsystems and better fault-tolerance throughout the system. Due to
the immense complexity of the modernization process, they did not however go directly
from a monolithic architecture to microservices. Instead, they chose so-called verticals as an
intermediate step. These self-contained vertical systems restructure their single-application
system along their business subdomain into initially four but eventually up to twelve
verticals. Each vertical is a standalone application with its own separate frontend, backend,
and data storage. Figure 5.1 gives an overview of the self-contained system architecture

Figure 5.1. Decomposition of the monolith into verticals at otto.de [Hasselbring and Steinacker 2017].

71

5. Related Work

structure. The different independent user interfaces of each vertical are assembled by
the Page Assembly Proxy while the cross-cutting concerned services are deployed by the
Backend Integration Proxy. Each vertical belongs to a single team in order to follow Conway’s
Law. Each team incorporated DevOps as well as CI/CD in their development process
to stay agile and responsive to their development environment. The next step in the
modernization process was to further divide the verticals into microservices. The definition
of each microservice remains inside its domain boundaries and does not overlap with other
domains. Figure 5.2 clarifies this decomposition within the domain boundaries, which are
depicted as red lines in this figure. By keeping the general structure of the verticals, they
combine the benefits of both self-contained systems and microservices. The verticals give
the microservices their structure. In addition, the microservices ensure that each vertical
does not devolve itself into monolithic applications.

Figure 5.2. Further decomposition of verticals into microservices at otto.de [Steinacher 2014].

72

5.1. Software Modernization Projects

5.1.2 ExplorViz

The live trace visualization tool ExplorViz, which is used as one of the main analysis
tools for this thesis, started off with a monolithic architecture. The legacy architecture
utilizes the Google Web Toolkit (GWT) as a simple solution for developing Java code both
frontend and backend in a single project. The frontend-related code is then compiled to
JavaScript code for execution. GWT Remote Procedure Calls (RPC) enables the triggering
of server-side actions or data transfer via HTTP. The goal of this chosen technology stack is
to enable developers with limited experience, such as computer science students, to quickly
understand the used technologies and actively contribute to the ExplorViz project.

The architectural modernization of the ExplorViz project was triggered by two drivers.
First, by the development stop of GWT and secondly, by the increasing popularity of higher
performant RESTful web services in comparison to the previously and widely used SOAP-
based services (Simple Object Access Protocol) [Upadhyaya et al. 2011]. In order to ensure
a flexible and scalable application, the monolithic ExplorViz architecture is modernized in
a two-step procedure towards microservices. This process is illustrated in Figure 5.3. As a
first step, the monolith, which can be seen in the top part of the presented figure, is divided
into two independent self-contained microservices Backend and Frontend. The backend
is implemented as a Java-based Jersey1 web service. It provides a RESTful API for the
client communication. The frontend utilizes the JavaScript framework Ember2 for providing
visualizations of software landscape models inside a web browser. Ember is executed
inside a Node.js3 environment. Additionally, the previously used custom-made monitoring
component is replaced by the monitoring framework Kieker. Further information on Kieker
can be found in Section 2.6.

The next step of the architecture modernization, depicted in the bottom part of Fig-
ure 5.3, further divides the backend into additional microservices. The frontend-backend
communication takes place via a single endpoint, a Nginx4 reverse proxy. This API gateway
takes client requests and passes them to designated services of a server. Subsequently, the
response of the server is then delivered back to the client. The communication between
different microservices of the ExplorViz backend is handled by a Apache Kafka5 message
broker. This well-structured organization of the communication within the software archi-
tecture enforces lose coupling and therefore enables services to be developed, deployed,
and executed independently. For a more detailed discussion about the modernization
process as well as a in-depth introduction to the new microservice architecture, it is referred
to Zirkelbach et al. [2019].

1https://jersey.github.io/, accessed 22.05.2019
2https://emberjs.com/, accessed 22.05.2019
3https://nodejs.org/, accessed 22.05.2019
4https://www.nginx.com/, accessed 22.05.2019
5https://kafka.apache.org/, accessed 22.05.2019

73

https://jersey.github.io/
https://emberjs.com/
https://nodejs.org/
https://www.nginx.com/
https://kafka.apache.org/

5. Related Work

Figure 5.3. Overview of the architectural evolution of ExplorViz from a monolith (top) to a first
modularization (middle) and finally to a microservice architecture (bottom) [Zirkelbach
et al. 2019].

74

5.1. Software Modernization Projects

5.1.3 OceanTEA

The data analyzing software OceanTEA6, developed by the Software Engineering Group
of the Kiel University, supports scientists in interactively exploring and analyzing high-
dimensional data sets. The different microservices of this architecture are structured in three
verticals, which are marked in red in Figure 5.4. Each of the verticals group microservices
together which are related. The OceanTEA Web Client communicates with the server-side
part of OceanTEA via an API Gateway by using HTTP and REST calls. The API Gateway
then calls the concerned microservices via REST calls. Microservices communicate with
each other and exchange data, depicted as black arrows in Figure 5.4.

API Gateway

User Auth
Microservice

Time Series
Conversion
Microservice

Time Series
Management 1

Microservice

Time Series
Management 2

Microservice

Spatial Analysis
Microservice

Time Series Pattern
Discovery

Microservice

DB DB DB DB

OceanTEA
Web Client

HTTP, REST

REST REST REST REST

REST

Data
Exchange

Time Series Management Spatial Analysis Pattern Discovery

Figure 5.4. Overview of OceanTEA microservice architecture [Johanson et al. 2016].

5.1.4 GeRDI

The GeRDI project provides scientists with a sustainable Generic Research Data Infrastruc-
ture (GeRDI) in order to search, use and re-use external, multidisciplinary research data
[Thomsen et al. 2018]. By combining concepts of domain-driven design and self-contained
systems, the resulting architecture supports a flexible adjustment to changing requests
and an easy integration of already existing software and external services such as cloud
computing [de Sousa et al. 2018]. The application domain is clustered into eight distinct
generic service domains which are realized as independent self-contained systems, as

6https://github.com/cau-se/oceantea, accessed 23.05.2019

75

https://github.com/cau-se/oceantea

5. Related Work

illustrated in Figure 5.5. Each of them represents a required functionality of the concerned
research cases and a step in the life span of research data. Each self-contained system
contains its own business logic, data and, if required, its own UI. The self-contained systems
communicate with each other via remote REST-interfaces, even though the inter-service
communication should be reduced to a minimum. A backend integration layer deploys
possible cross-cutting concerns such as a system monitoring infrastructure. Each separately
implemented user interface of each self-contained system is deployed by the frontend
integration layer.

Figure 5.5. Overview of the GeRDI self-contained system architecture [de Sousa et al. 2018].

5.1.5 Galeria Kaufhof

In 2014, the German department store chain Galeria Kaufhof started modernizing their
monolithic software architecture of their online web store towards a self-contained software
architecture [Grotzke 2014; Kiessling 2015]. By dividing the business domain into five
distinct subdomains, the boundaries of the self-contained systems were defined. Here, one
domain can possibly contain multiple self-contained systems. In order to ensure loose
coupling, each service owns its presentation layer, business logic layer, and persistence
layer. Furthermore, the subsystems only communicate with each other via asynchronous
REST calls when necessary. Besides the five self-contained systems Explore, Search, Evaluate,
Order, and Control, the architecture also incorporates a Foundation Services Layer which
deploys possible cross-cutting services. Furthermore, a Frontend Ingertaion Layer assembles
the independent user interfaces of each service to a coherent website.

76

5.1. Software Modernization Projects

Frontend Integration

Explore Search Evaluate Order Control

Foundation Services

DB DB DB DB DB

UI

API

UI

API

UI

API

UI

API

UI

API

Figure 5.6. Overview of the Galeria Kaufhof self-contained system architecture [Grotzke 2014].

5.1.6 Groupon

Prior to the decision of Groupon, an online deal marketplace, the architecture of their
software system consisted of multiple monoliths, each responsible for online marketplaces
of different continents. Each monolith redundantly implemented the same functionality.
Besides the increased development effort to serve both monoliths, the performance of the
software system could not keep up with the rate of growth of the company [Geitgey 2013].
Hence, Groupon decided to completely rebuild their architecture to a microservice oriented
architecture model.

Figure 5.7 shows the modernized architecture of Groupon. The application was re-
organized into more than twenty separate web applications [Geitgey 2013]. A Content
Delivery Network (CDN)7 delivers different content to the customer, based on the customer’s
geographic location. The routing layer then forwards the user to the desired frontend of
the application. The frontend layer communicates with the backend of the system via a
designated API layer. The backend is divided into two domains, namely the North America
Backend and the European Backend. Each of them includes multiple self-contained microser-
vices. In the future, it is intended to merge the two backend domains into a single backend
to further reduce redundancy throughout the system [Geitgey 2013].

7https://www.webopedia.com/TERM/C/CDN.html, accessed 23.05.2019

77

https://www.webopedia.com/TERM/C/CDN.html

5. Related Work

Figure 5.7. Overview of the Groupon microservice architecture [Geitgey 2013].

5.2 Software Modernization with the Help of Analysis Tools

5.2.1 Modernization of a Customer Management Application

A detailed software modernization process and best practices for the decomposition of
the architecture into microservices are presented in the article of Knoche and Hasselbring
[2018]. Furthermore, it reviews its implementation in a large-scale industrial modernization
project. After defining a model of the application’s domain in the initial phase of the
modernization process, static analysis techniques with the help of custom made tools
are employed in order to find communication entry points into this application. These
entry points can for example be method calls or database queries which are invoked by
outside applications. As it was stated in the article, this discovery step was crucial for
successfully defining modular boundaries for future microservices due to the previous

78

5.2. Software Modernization with the Help of Analysis Tools

unawareness of all possible entry points [Knoche and Hasselbring 2018]. However, they
did not incorporate dynamic analysis in combination with static analysis. Therefore, this
thesis aims at combining both analysis approaches for the modernization process of the
large-scale industry software application. Furthermore, the goal is to receive further insights
into the impact of the dynamic analysis tool ExplorViz.

5.2.2 Microservice Discovery for a Cargo Tracking Domain

Gysel et al. [2016] and Baresi et al. [2017] both perform a tool-supported domain analysis
of a cargo tracking software application, an often used sample application which was
introduced by Evans [2003]. Before discussing the analysis process and the results of both
projects, this demo application is presented with the help of Figure 5.8 in order to gain
the necessary understanding of the application and its domain. The figure shows the
class diagram [Baresi et al. 2017] of a Java implementation8 of this application. It provides
the functionality to move a Cargo with a unique trackingId between two Locations via
a RouteSpecification. When the Cargo is ready for shipment it gets associated with a
Itinerary which is a list of Legs. Each Leg routes the delivery by selecting from exist-
ing Voyages and CarrierMovements. The progress of the Cargo on its Itinerary is traced
by HandlingEvents. Any available general information about the delivery status or the
estimated date of arrival is gathered by Delivery.

Gysel et al. [2016] utilizes the static software system and domain analysis tool Service
Cutter9 in order to discover a suitable decomposition into microservices within the software

8https://cargo-tracker.gitbook.io/, accessed 23.05.2019
9https://github.com/ServiceCutter/ServiceCutter, accessed 23.05.2019

Voyage
voyageNumber: String

handleCargoEvent()
createVoyage()

HandlingEvent
location: Location
completion: Date

viewTracking()
handleCargoEvent()

Delivery
transportStatus: TransportStatus
estimateArrivalDate: Date
routingStatus: RoutingStatus

viewCargo()
handleCargoEvent()

Leg
load: Location
unload: Location

routeCargo()

CarrierMovement
departure: Location
arrival: Location
departureTime: Date
arrivalTime: Date

addCarrierMovement()

Location
name: String

createLocation()

Cargo
trackingId: String

createCargo()

Itinerary
itineraryNo: String

routeCargo()

0..n

RouteSpecification
origin: Location
destination: Location
arrivalDeadline: Date

bookCargo()
changeCargoDestination()

1

1..n
1

1

1..n

1

1..n

Figure 5.8. Class diagram of the cargo tracking application [Baresi et al. 2017].

79

https://cargo-tracker.gitbook.io/
https://github.com/ServiceCutter/ServiceCutter

5. Related Work

Figure 5.9. Decomposition of the cargo tracking domain by Service Cutter [Baresi et al. 2017].

architecture of the cargo tracking application. Service Cutter generates candidate service cuts
from user-defined System Specification Artifacts (SSA). The candidate service cuts are chosen
in a way that the internal structure of these candidates is highly cohesive and such that the
services are loosely coupled to each other. The SSA, which are for this reason utilized, are
data sets which contain information about coupling criteria. These criteria define significant
architectural requirements and arguments why two distinct entities of a system should or
should not be part of the same service. SSAs can be comprised of numerous data types,
called User Representations, such as use cases or Entity-Relationship Models. A list of all
possible data types can be found in the Service Cutter Wiki10.

Baresi et al. [2017] aims to provide an automated solution for decomposing a given
domain into candidate microservices with the help of distributionally related words using Co-
occurrences (DISCO) [Kolb 2009], a pre-computed database of collections and distributionally
similar words. The similarity between two words is measured based on their co-occurrences
in large collections of text, such as Wikipedia, and is statistically analyzed. Hence, the
goal is to convert the cargo tracking domain into a machine-readable format in order to
find cohesive groups within. Therefore, Baresi et al. [2017] defines operations that the
previously presented cargo tracking domain should offer to its user. These operations are
specified with Swagger11, a language-agnostic interface for RESTful APIs. Afterwards, the
Swagger specifications are mapped onto the entries of a provided reference vocabulary, in
this case Schema.org12, a project for creating, maintaining, and promoting schemata for

10https://github.com/ServiceCutter/ServiceCutter/wiki/User-Representations, accessed 23.05.2019
11https://swagger.io/, accessed 23.05.2019
12https://schema.org/, accessed 23.05.2019

80

https://github.com/ServiceCutter/ServiceCutter/wiki/User-Representations
https://swagger.io/
https://schema.org/

5.2. Software Modernization with the Help of Analysis Tools

Figure 5.10. Decomposition of the cargo tracking domain by using the DISCO-based approach [Baresi
et al. 2017].

structured data. The mapping process uses a fitness function which is based on DISCO
entries. This term of the reference vocabulary, that the operation is mapped onto, should
describe its reference concept which depicts the operation the most accurate. Next, the goal
is to identify operations with the same reference concepts. At this point, it is assumed
that operations which share the same reference concept are also similar to each other and
should therefore be grouped in the same subdomain. The results of this algorithm suggest
a decomposition of the given domain into multiple reference concepts. Each reference
concept comprises the functionality of a microservice. For further details on the used
algorithms of this decomposition approach, see Baresi et al. [2017].

Figure 5.11 shows the expected division of the cargo tracking domain into four services
as defined manually by Gysel et al. [2016], namely Voyage Service, Tracking Service, Location
Service and Planning Service. Each dotted line in this figure marks out a cohesive service
of the software system. It is noted that the resources and the functionality of the Delivery

class is divided between the Tracking Service and the Planning Service. When comparing the
results of Figure 5.9 and Figure 5.10 to the expected results of Figure 5.11, it is apparent
that both tool-assisted decomposition approaches do not generate the expected division.
However, on the one hand, it can be argued that the previously defined expected results
are not optimal. On the other hand, it is possible that the generated results are of the same
quality as the expected decomposition and therefore provide a valid alternative. For a more
in-depth look into the matter, see [Gysel et al. 2016] and [Baresi et al. 2017].

81

5. Related Work

Delivery
transportStatus: TransportStatus
handleCargoEvent()

viewCargo()
routingStatus: RoutingStatus
estimateArrivalDate: Date

Location Service

Voyage HandlingEvent Leg

CarrierMovement Location
Cargo Itinerary

0..n

RouteSpecification

1

1..n
1

1

1..n

1

1..n

Voyage Service

Planning Service

Tracking Service

Figure 5.11. Expected decomposition of the cargo tracking domain [Gysel et al. 2016].

While both papers apply tool-assisted static analysis in order to discover microservices
inside a software application, it can be argued that the analysis of this thesis operates on
another level. The in|FOCUS software system is many times bigger and more complex than
the cargo tracking application. Furthermore, the analysis process of this thesis combines
static and dynamic analysis tools in order to combine the benefits of both. Especially the
dynamical aspect of the architectural analysis, with regard to the discovery of microservices,
is novel.

82

Chapter 6

Conclusions and Future Work

The final chapter of this thesis summarizes the analysis process whose goal was to mod-
ernize the in|FOCUS software architecture and concludes on its results. Furthermore,
the gathered major insights of the evaluating qualitative interviews are presented. These
evaluation results as well as the gathered experience throughout the modernization process
itself give rise to future work and possible extensions.

6.1 Conclusion

Within the scope of this thesis, we presented and executed the modernization process
of a large-scale monolithic software system towards a microservice architecture. For this
work, static analysis technologies, which are commonly applied within these kinds of
modernization projects, are supplemented by the dynamic analysis capabilities of the live
trace visualization tool ExplorViz. Hence, we initially introduced main ideas of software
architecture modernization and distinguished between the two general greenfield and
brownfield approaches. Furthermore, the advantages of self-contained systems as an
intermediate step before fully transitioning to microservices in the modernization process
was discussed.

The modernization process was structured around three phases. We capitalized on the
applicability of main domain-driven design concepts to the investigation of boundaries of
loosely coupled and highly cohesive services within the software system. Therefore, we
initially discovered service operations of the involved lottery domain actors. These service
operations were then grouped into bounded contexts for providing a possible general
division of the lottery domain. The second modernization phase based the static analysis
of the in|FOCUS application on the previously defined bounded contexts. By employing
static analysis techniques, we rediscovered the service operations and bounded contexts
within the existing application architecture. The boundaries of the bounded contexts were
adapted and redefined in order to improve their degree of loose coupling and cohesion.
As a result, the application was divided into several distinct self-contained services. The
third and final step was the verification of the static analysis results with the help of the
live trace visualization tool ExplorViz. The invoked behavior of previously defined service
operations was dynamically analyzed in order to evaluate the loose coupling qualities
and cohesiveness of these services. Thereafter, a possible more fine-grained division of the

83

6. Conclusions and Future Work

self-contained systems into microservices was presented.
Furthermore, we qualitatively assessed the ability of ExplorViz to support the modern-

ization of a large-scale monolithic software system towards a microservices architecture
by conducting guided interviews with the software developers of in|FOCUS. This gave
us some key insights on the applicability of the current version of ExplorViz. Moreover,
the detailed feedback of the development team lead to various noteworthy possibilities for
extending the ExplorViz tool set.

The assessment confirmed that one of the central prerequisites for the effective usage
of ExplorViz is a thorough prior knowledge of the entire monolithic architecture. What is
more, the evaluation also demonstrated that finding a suitable division into self-contained
systems or microservices is highly complex process which requires experience and time.

6.2 Future Work

Usability of ExplorViz for Microservice Software Modernization

Up to our knowledge, the qualitative assessment presented in this thesis is the first to
investigate the impact of ExplorViz on the modernization of a monolithic application
towards microservice architecture. Clearly, a more comprehensive evaluation involving
more participants and allowing for a larger time frame would be desirable. In particular,
repeating this kind of evaluation with participants who already have prior experience with
the ExplorViz tool we deem as very interesting. For the sake of a better comparability,
the software architecture used in such a future study should be similar to the in|FOCUS
application in the means of complexity and scale.

Furthermore, the in-development version of ExplorViz, which was used throughout this
thesis, limited the dynamical analysis due to technical issues. The number of in|FOCUS
packages that could be monitored at once had to be reduced to a subset and consequently, it
was not possible to observe the complete behavior of the monitored application. Therefore,
we were unable to analyze the behavior of certain service operations, especially the ones
which are far-reaching within the system architecture and utilizing a high number of
components. However, exactly these service operations are possibly the most interesting
and impactful use cases to analyze. These operations could affect a high number of self-
contained systems or microservices. This could possibly result in unwanted dependencies
and coupling between the involved services. Consequently, having the ability to analyze
these high-impacting service operations in the future would certainly improve architecture
analysis capabilities. Hence, we deem the extension of the ExplorViz tool to cover such use
cases as crucial in order to support a boarder spectrum of application scenarios.

84

6.2. Future Work

Supporting Features of ExplorViz

Analyzing the in|FOCUS architecture with ExplorViz as described in Section 3.5 as well
as the evaluation process of this thesis gives rise to the following new functionalities and
possible improvements of existing ExplorViz features.

ExplorViz already enables its users to revisit the past behavior of the monitored applica-
tion within a certain time frame. The user can click through each available point in history.
During the evaluating interviews, a playback function for history monitoring data was
suggested. By automatically executing a previously defined sequence of points in history,
the user could not only focus on analyzing the invoked behavior but could also revisit
and label the behavior of specific executed service operations more easily. The ability to
organize and revisit certain invoked behavior would improve recognizing opportunities for
and threats to certain bounded contexts.

Furthermore, we consider that the introduction of a heat map, encoding the system
work load within a certain color overlay, to ExplorViz tool set would improve its analytic
capabilities. This heat map could enhance the currently available work load visualization of
the system for the 2D landscape and 3D application model of ExplorViz. Bottleneck services
as well as over-loaded services which are in need of possible vertical scaling would be
more easily identified. This could prove to be highly useful for the microservice discovery
as well as the maintenance of such microservice architectures.

Another suggestion which came up during the evaluating interviews was to enable more
detailed communication lines between packages and classes within the model. Exemplarily,
by showing the name of the sent objects directly on the communication lines, it could
help to discover and to understand yet unfamiliar parts of the architecture. However, the
challenge here would be to find a way to represent the possibly high amount of information
in a clear and organized fashion.

Moreover, we suggest to extend the functionality of the trace replayer. Being able to
filter the list of executed traces of the ExplorViz trace replayer could facilitate to focus on
points of high interest during the architectural analysis. As an example, the user could
selectively analyze certain parts of the system behavior by only presenting the traces of a
specified sequence of communication lines.

85

Bibliography

[Admin 2018] I. Admin. Greenfield vs. Brownfield Software Development. What’s the Difference?
2018. url: http://www.indusa.com/articles/greenfield-vs-brownfield-software-development/. (Cited
on page 20)

[Baresi et al. 2017] L. Baresi, M. Garriga, and A. Derenzis. Microservices Identification
through Interface Analysis. In: Sept. 2017, pages 19–33. (Cited on pages 79–81)

[Bennett and Vaclav 2000] K. Bennett and R. Vaclav. Software maintenance and evolution:
a roadmap. In: Proceedings of the Conference on The Future of Software Engineering (ICSE
2000). ACM New York, June 2000, pages 73–87. (Cited on page 1)

[Bindick and Stoye 2018] S. Bindick and M. Stoye. Von Monolithen zu Microservices: Domain-
Driven Design als Schlüssel zum Erfolg. 2018. url: https://entwickler.de/online/development/

microservices-domain-driven-design-579861186.html. (Cited on pages 20, 21, 47)

[Blanch 2017] R. Blanch. Microservices: Strategies for Migration in a Brownfield Environment.
2017. url: https://medium.com/@rhettblanch_48135/microservices-strategies-for-migration-in-a-

brownfield-environment-6c14335a8069. (Cited on pages 20, 21)

[Bonér 2017] J. Bonér. Reactive Microservices. The Evolution of Microservices at Scale. Sebastopol,
CA: O’Reilly Media, 2017. (Cited on pages 6, 7, 20)

[Brown 2014] P. Brown. Strategies for Integrating Bounded Contexts. 2014. url: https:

//culttt.com/2014/11/26/strategies-integrating-bounded-contexts/. (Cited on page 51)

[Conway 1968] M. E. Conway. How do committees invent. Datamation 14.4 (Mar. 1968),
pages 28–31. (Cited on page 9)

[De Sousa et al. 2018] N. T. de Sousa, W. Hasselbring, T. Weber, and D. Kranzlmüller.
Designing a Generic Research Data Infrastructure Architecture with Continuous Soft-
ware Engineering. In: Software Engineering Workshops 2018. Volume Vol-2066. CEUR
Workshop Proceedings. CEUR-WS.org, Mar. 2018, pages 85–88. (Cited on pages 75, 76)

[Evans 2003] E. J. Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software.
Boston, Massachusetts: Addison-Wesley Professional, 2003. (Cited on pages 10, 79)

[Fittkau et al. 2017] F. Fittkau, A. Krause, and W. Hasselbring. Software landscape and
application visualization for system comprehension with ExplorViz. Information and
Software Technology 87 (July 2017), pages 259–277. (Cited on page 13)

[Fittkau et al. 2015] F. Fittkau, S. Roth, and W. Hasselbring. ExplorViz: Visual Runtime
Behavior Analysis of Enterprise Application Landscapes. In: 23rd European Conference
on Information Systems (ECIS 2015). May 2015. (Cited on page 13)

87

http://www.indusa.com/articles/greenfield-vs-brownfield-software-development/
https://entwickler.de/online/development/microservices-domain-driven-design-579861186.html
https://entwickler.de/online/development/microservices-domain-driven-design-579861186.html
https://medium.com/@rhettblanch_48135/microservices-strategies-for-migration-in-a-brownfield-environment-6c14335a8069
https://medium.com/@rhettblanch_48135/microservices-strategies-for-migration-in-a-brownfield-environment-6c14335a8069
https://culttt.com/2014/11/26/strategies-integrating-bounded-contexts/
https://culttt.com/2014/11/26/strategies-integrating-bounded-contexts/

Bibliography

[Fittkau et al. 2013] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring. Live Trace Visual-
ization for Comprehending Large Software Landscapes: The ExplorViz Approach. In:
1st IEEE International Working Conference on Software Visualization (VISSOFT 2013). Sept.
2013, pages 1–4. (Cited on page 13)

[Fowler 2015] M. Fowler. MonolithFirst. 2015. url: https://martinfowler.com/bliki/MonolithFirst.
html. (Cited on page 21)

[Fritzsch et al. 2018] J. Fritzsch, A. Zimmermann, and S. Wagner. From Monolith to
Microservices: A Classification of Refactoring Approaches. ArXiv e-prints 3 (July 2018).
(Cited on page 20)

[Gall et al. 2003] M. D. Gall, W. R. Borg, and J. P. Gall. Educational Research. An Introduction.
Boston, MA: Allyn and Bacon, 2003. (Cited on page 56)

[Geitgey 2013] A. Geitgey. I-Tier: Dismantling the Monolith. 2013. url: https://engineering.

groupon.com/2013/misc/i-tier-dismantling-the-monoliths/. (Cited on pages 20, 77, 78)

[Gonchar 2018] G. Gonchar. Data Consistency in Microservices Architecture. 2018. url:
https://dzone.com/articles/data-consistency-in-microservices-architecture. (Cited on page 49)

[Grotzke 2014] M. Grotzke. Jump - Ein Technologie-Sprung bei Galeria Kaufhof. 2014. url:
http://tech.kaufhof.io/general/2014/09/20/jump- ein- technologiesprung- bei- galeria- kaufhof.html.
(Cited on pages 76, 77)

[Gysel et al. 2016] M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann. Service
Cutter: A Systematic Approach to Service Decomposition. In: 5th European Conference on
Service-Oriented and Cloud Computing (ESOCC). Volume LNCS-9846. Service-Oriented
and Cloud Computing. Vienna, Austria: Springer International Publishing, Sept. 2016,
pages 185–200. (Cited on pages 79, 81, 82)

[Hasselbring and Steinacker 2017] W. Hasselbring and G. Steinacker. Microservice Architec-
tures for Scalability, Agility and Reliability in E-Commerce. In: 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW). Apr. 2017, pages 243–246. (Cited
on pages 9, 21, 71)

[Johanson et al. 2016] A. Johanson, S. Flögel, C. Dullo, and W. Hasselbring. OceanTEA:
Exploring Ocean-Derived Climate Data Using Microservices. In: Proceedings of the Sixth
International Workshop on Climate Informatics (CI 2016). NCAR Technical Note NCAR/TN.
Sept. 2016, pages 25–28. (Cited on page 75)

[Kalske et al. 2018] M. Kalske, N. Mäkitalo, and T. Mikkonen. Challenges when moving
from Monolith to Microservice Architecture. In: Current Trends in Web Engineering.
Edited by I. Garrigós and M. Wimmer. Basel: Springer International Publishing, 2018,
pages 32–47. (Cited on pages 1, 20)

[Kharenko 2015] A. Kharenko. Monolithic vs. Microservices Architecture. 2015. url: https:

//articles.microservices.com/monolithic- vs- microservices- architecture- 5c4848858f59. (Cited on
pages 6–9)

88

https://martinfowler.com/bliki/MonolithFirst.html
https://martinfowler.com/bliki/MonolithFirst.html
https://engineering.groupon.com/2013/misc/i-tier-dismantling-the-monoliths/
https://engineering.groupon.com/2013/misc/i-tier-dismantling-the-monoliths/
https://dzone.com/articles/data-consistency-in-microservices-architecture
http://tech.kaufhof.io/general/2014/09/20/jump-ein-technologiesprung-bei-galeria-kaufhof.html
https://articles.microservices.com/monolithic-vs-microservices-architecture-5c4848858f59
https://articles.microservices.com/monolithic-vs-microservices-architecture-5c4848858f59

Bibliography

[Kiessling 2015] M. Kiessling. Die Architektur der Galeria.de Plattform im Kontext der Produk-
tentwicklungsorganisation. 2015. url: http://tech.kaufhof.io/general/2015/12/15/architektur-und-
organisation-im-galeria-de-produktmanagement. (Cited on page 76)

[Knoche and Hasselbring 2018] H. Knoche and W. Hasselbring. Using Microservices for
Legacy Software Modernization. IEEE Software 35.3 (Apr. 2018), pages 44–49. (Cited on
pages 2, 19, 20, 22, 78, 79)

[Kolb 2009] P. Kolb. Experiments on the difference between semantic similarity and
relatedness. NODALIDA 2009 Conference Proceedings 4 (Jan. 2009). (Cited on page 80)

[Lewis and Fowler 2014] J. Lewis and M. Fowler. Microservices: a definition of this new
architectural term. 2014. url: https://martinfowler.com/articles/microservices.html. (Cited on
pages 7–9)

[Martincevic 2016] N. Martincevic. DDD: Context is King – Kein Context, keine Microservices.
Nov. 2016. url: https://www.informatik-aktuell.de/entwicklung/methoden/ddd-context-is-king-kein-

context-keine-microservices.html. (Cited on pages 20, 21)

[Newman 2015a] S. Newman. Building microservices. Disigning fine-grained systems. Se-
bastopol, CA: O’Reilly Media, 2015. (Cited on pages 1, 2, 7–9, 48, 50, 51, 53)

[Newman 2015b] S. Newman. Microservices For Greenfield? 2015. url: https://samnewman.io/

blog/2015/04/07/microservices-for-greenfield/. (Cited on page 20)

[Richards 2016] M. Richards. Microservices vs. Service-Oriented Architecture. O’Reilly Media,
Apr. 2016. (Cited on page 9)

[Richardson 2014] C. Richardson. Microservices: Decomposing Applications for Deployability
and Scalability. 2014. url: https://www.infoq.com/articles/microservices- intro/. (Cited on
pages 5, 20)

[Richardson 2018] C. Richardson. Pattern: API Gateway / Backends for Frontends. 2018. url:
https://microservices.io/patterns/apigateway.html. (Cited on page 51)

[Sneed and Seidl 2013] H. M. Sneed and R. Seidl. Softwareevolution. Erhaltung und Fortschrei-
bung bestehender Softwaresysteme. Heidelberg, Germany: dpunkt.verlag, 2013. (Cited on
pages 7, 19)

[Steinacher 2014] G. Steinacher. Scaling with microservices and vertical decomposition. 2014.
url: https://dev.otto.de/2014/07/29/scaling- with- microservices- and- vertical- decomposition/.
(Cited on page 72)

[Steinacker 2015] G. Steinacker. Von Monolithen und Microservices. 2015. url: https:

//www.informatik-aktuell.de/entwicklung/methoden/von-monolithen-und-microservices.html. (Cited on
page 51)

[Thomsen et al. 2018] I. Thomsen, W. Haselbring, J. Schmidt, and M. Quaas. Integrated
search and analysis of multidisciplinary marine data with gerdi. International Conference
on Marine Data and Information Systems (2018). (Cited on page 75)

89

http://tech.kaufhof.io/general/2015/12/15/architektur-und-organisation-im-galeria-de-produktmanagement
http://tech.kaufhof.io/general/2015/12/15/architektur-und-organisation-im-galeria-de-produktmanagement
https://martinfowler.com/articles/microservices.html
https://www.informatik-aktuell.de/entwicklung/methoden/ddd-context-is-king-kein-context-keine-microservices.html
https://www.informatik-aktuell.de/entwicklung/methoden/ddd-context-is-king-kein-context-keine-microservices.html
https://samnewman.io/blog/2015/04/07/microservices-for-greenfield/
https://samnewman.io/blog/2015/04/07/microservices-for-greenfield/
https://www.infoq.com/articles/microservices-intro/
https://microservices.io/patterns/apigateway.html
https://dev.otto.de/2014/07/29/scaling-with-microservices-and-vertical-decomposition/
https://www.informatik-aktuell.de/entwicklung/methoden/von-monolithen-und-microservices.html
https://www.informatik-aktuell.de/entwicklung/methoden/von-monolithen-und-microservices.html

Bibliography

[Thönes 2015] J. Thönes. Microservices. IEEE Software 32.1 (Feb. 2015), pages 116–116.
(Cited on page 1)

[Upadhyaya et al. 2011] B. Upadhyaya, Y. Zou, H. Xiao, J. Ng, and A. Lau. Migration of
SOAP-based services to RESTful services. 13th IEEE International Symposium on Web
Systems Evolution (WSE) (2011). (Cited on page 73)

[Van Hoorn et al. 2012] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker: A Framework
for Application Performance Monitoring and Dynamic Software Analysis. In: Proceedings
of the 3rd joint ACM/SPEC International Conference on Performance Engineering (ICPE 2012).
ACM, Apr. 2012, pages 247–248. (Cited on page 13)

[Wolff 2017] E. Wolff. Self Contained Systems (SCS): Microservices Done Right. 2017. url:
https://www.infoq.com/articles/scs-microservices-done-right/. (Cited on page 10)

[Woods 2016] E. Woods. Software architecture in a changing world. IEEE Software 33.6
(Nov. 2016), pages 94–97. (Cited on page 1)

[Zirkelbach et al. 2019] C. Zirkelbach, A. Krause, and W. Hasselbring. Modularization of
Research Software for Collaborative Open Source Development. In: 2019. (Cited on
pages 14, 15, 73, 74)

90

https://www.infoq.com/articles/scs-microservices-done-right/

Appendix

A Lottery Domain Service Operations

Table 1. List of use cases of a lottery application

Customer login Customer logout
Forgot password Create promotion
Check OASIS entry Check banking information
Edit promotions Receive lottery promotions
Import lottery prizes See product list
Transfer money to bank account Transfer money to online wallet
Import lottery drawing dates Block user account
Create new customer Create new user
Edit user rights Create new role
Admin portal login/logout Deregister user
Check winnings Request SCHUFA information
Change cash-out limit Search promotions
Export customer balance sheet Cancel game order
Search order Determine winnings
Create account statement Add credit card
Admin portal login Check winners
Check customer identity Invoke payment method
Search customer account Edit debit lock
Cancel subscriptions Edit customer card
Assign role Compile master data set
Edit newsletters Search customer card
Buy new customer card Credit material prices
Receive lottery promotions Fill out lottery ticket
Choose lottery ticket Submit lottery tickets
Gather customer data Edit personal information
New subscription Receive lottery drawing results
Cash out winnings Notify winners
Cancel customer card Specify target group
Verify personal information Change gaming limits
Determine Winnings Check gaming history
Process incoming transaction Process outgoing transaction
Subscribe to newsletter Unsubscribe to newsletter

91

7. Appendix

B Mapping of Service Operations to Business Objects

Table 2. Mapping of service operations (left) to business objects (right).

Business Object Service Operations

Customer Verification
Check OASIS entry
Request SCHUFA information

Customer Account

Customer Login
Forgot password
Change cash-out limit
Export customer balance sheet
Search order
Create account statement
Receive lottery promotion
Customer logout

Customer Card

Buy new customer card
Edit customer card
Cancel customer card
Search customer card

Personal Information
Edit personal information
Verify personal information

Subscription
New subscription
Cancel subscription

Banking Information
Transfer money to bank account
Check banking information
Add credit card

Online Wallet
Transfer money to bank account
Transfer money to online wallet

Gaming Limits
Change cash-out limit
Change gaming limits

Game Catalog
Choose lottery ticket
See product list

Lottery Ticket
Choose lottery ticket
Cancel game order
Fill out lottery ticket

92

B. Mapping of Service Operations to Business Objects

Table 2 (continued).

Newsletter

Change promotions
Create newsletters
Create promotion
Search promotions
Recieve lottery promotions
Subscribe to newsletter
Unsubscribe to newsletter

Customer Behavior Analysis Gather customer data

Player
Receive lottery drawing results
Notify winners
Check gaming history

Ticket Submission

Create game order
Cancel game order
Check order
Submit lottery tickets

Payment Method
Transfer money to bank account
Invoke payment method
Transfer money to online wallet

Transaction

Transfer money to bank account
Transfer money to online wallet
Process incoming transaction
Process outgoing transaction

Prize

Credit material prices
Determine winnings
Check winnings
Receive lottery drawing results
Import lottery prizes

Lottery Drawing

Import lottery drawing dates
Receive lottery drawing results
Check winnings
Check winners
Credit material prices
Transfer winnings to customer

93

7. Appendix

Table 2 (continued).

Administration

Create new customer account
Edit user rights
Search order
Assign role
Block user account
Create new user
Create new role
Deregister user
Edit debit lock

User Account

Admin portal login/logout
Search order
Gather customer data
Create promotion
See product list
Compile master data set
Assign role

94

C. Mapping of in|FOCUS Packages to Service Operations

C Mapping of in|FOCUS Packages to Service Operations

Table 3. Mapping of in|FOCUS packages to service operations.

Service Operation Involved Packages

Create new customer

component.usermanagement

component.services

component.newsletter

component.portal

component.subledger

component.eod

component.common

Login customer

component.usermanagement

component.services

component.common

component.subledger

Logout customer
component.usermanagement

component.services

component.common

Forgot password component.usermanagement

Change customer information component.usermanagement

Change banking information
component.externalservices

component.usermanagement

component.subledger

Verify personal customer data
component.usermanagement

component.services

Check OASIS entry
component.externalservices

component.usermanagement

component.services

Request SCHUFA information
component.services

component.externalservices

component.usermanagement

Change gaming limits
component.services

component.subledger

component.usermanagement

Buy new customer card
component.customercard

component.usermanagement

component.externalservices

95

7. Appendix

Table 3 (continued).

Change cash-out limits
component.services

component.subledger

component.usermanagement

Export customer balance sheet component.services

Check customer identity
component.usermanagement

component.services

Search customer account component.usermanagement

Cancel customer card
component.usermanagement

component.customercard

Import lottery drawing dates component.gameprocessing

Receive lottery drawing results component.gameprocessing

Notify winners
component.gameprocessing

component.services

Check gaming history component.gameprocessing

New game subscription
component.usermanagement

component.gameprocessing

component.tsubscription

Cancel game subscription
component.usermanagement

component.gameprocessing

component.tsubscription

Check winnings component.gameprocessing

Import lottery prizes
component.zgw

component.gameprocessing

component.externalservices

Submit lottery tickets component.gameprocessing

Search order component.gameprocessing

Cancel game order
component.gameprocessing

component.services

Invoke payment method
component.subledger

component.externalservices

Process incoming transaction component.subledger

Process outgoing transaction component.subledger

Transfer money to online wal-
let

component.subledger

Cash out winnings
component.subledger

component.usermanagement

96

C. Mapping of in|FOCUS Packages to Service Operations

Table 3 (continued).

Transfer winnings to customer
component.gameprocessing

component.zgw

component.subledger

Determine winnings
component.gameprocessing

component.prizeanalyzer

Subscribe to newsletter
component.newsletter

component.usermanagement

Unsubscribe to newsletter
component.newsletter

component.usermanagement

Send newsletter to subscribers
component.newsletter

component.usermanagement

Create new user component.usermanagement

Create new role component.usermanagement

Deregister User

component.newsletter

component.usermanagement

component.services

component.customercard

component.subledger

Edit user rights component.usermanagement

Fill out lottery ticket component.gameprocessing

Gather customer data
component.reporting

component.monitoring

Assign user role component.usermanagement

97

	1 Introduction
	1.1 Motivation
	1.2 Goals of this Thesis
	1.2.1 G1: Discovery of the Software System in|FOCUS and its Domain
	1.2.2 G2: Identification of a Suitable Decomposition into Self-Contained Systems
	1.2.3 G3: Refinement of the Self-Contained Systems into Microservices
	1.2.4 G4: Assessment of the Ability of ExplorViz for Exploring Self-Contained Systems and Microservices

	1.3 Document Structure

	2 Foundations and Technologies
	2.1 The Monolithic Architecture Pattern
	2.2 The Microservice Architecture Pattern
	2.3 The Self-Contained Systems Architecture Pattern
	2.4 Domain-Driven Design
	2.5 The Static Software Structure Analysis Tool Structure101
	2.6 The Software Monitoring Framework Kieker
	2.7 The Live Trace Visualization Tool ExplorViz
	2.8 The Database Administration Tool DBeaver
	2.9 The JDBC Driver log4jdbc
	2.10 The Lottery Web Plattform in|FOCUS
	2.11 The Enterprise Container Platform Docker

	3 Analysis of a Monolithic Application
	3.1 Software Architecture Modernization
	3.2 Approach for Analyzing in|FOCUS
	3.3 Domain Analysis of in|FOCUS
	3.4 Static Analysis of in|FOCUS
	3.4.1 Introduction to the in|FOCUS Project
	3.4.2 Analyzing in|FOCUS with Structure101

	3.5 Dynamic Analysis of in|FOCUS
	3.5.1 JBoss and Kieker Configurations
	3.5.2 Analyzing the Behavior of in|FOCUS with ExplorViz

	3.6 Database Analysis of in|FOCUS
	3.7 Composition of the Services

	4 Evaluation
	4.1 Goals
	4.1.1 Research Questions
	4.1.2 Hypotheses

	4.2 Method
	4.2.1 General Interview Guide Approach
	4.2.2 Recruitment of Participants

	4.3 Interview
	4.3.1 Setup
	4.3.2 Scenario
	4.3.3 Execution

	4.4 Results
	4.4.1 Participants
	4.4.2 Answers
	4.4.3 Discussion of the Evaluation Results

	4.5 Threats to Validity

	5 Related Work
	5.1 Software Modernization Projects
	5.1.1 Otto.de
	5.1.2 ExplorViz
	5.1.3 OceanTEA
	5.1.4 GeRDI
	5.1.5 Galeria Kaufhof
	5.1.6 Groupon

	5.2 Software Modernization with the Help of Analysis Tools
	5.2.1 Modernization of a Customer Management Application
	5.2.2 Microservice Discovery for a Cargo Tracking Domain

	6 Conclusions and Future Work
	6.1 Conclusion
	6.2 Future Work

	Bibliography
	Appendix
	A Lottery Domain Service Operations
	B Mapping of Service Operations to Business Objects
	C Mapping of in|FOCUS Packages to Service Operations

